万字解读:大模型产品应该怎么做?

《银河系漫游指南》的作者——道格拉斯·亚当斯曾经对“技术”一词作出这样一种解释:

“技术”是描述某种尚未发挥作用的东西的词汇。

这是一个充满实用主义的定义,这句话可以被更直观地表述为:当我们还在热烈讨论某种技术时,往往意味着该技术还未真正发挥作用。

事实上所有底层技术驱动的产业革命都将经历一个市场焦点从技术向应用转移的过程,而当这种转移开始发生时,才意味着该技术开始兑现其价值。

所以在AGI到来前,一个与“如何实现AGI”同样值得我们兴奋的问题摆在了面前:

当信仰AI的先知们摆脱AGI执念,带领信徒到达技术的应许之地后,拔地而起的将是一座何等壮丽的全新城邦。

这个问题的可能答案指向LLM-Native产品:一种建立在LLMs技术特点和思维方式上的全新产品范式。

事实上,LLM-Native产品并不意味着与AGI技术分道扬镳,而更像是某种形式的殊途同归,也许当我们暂时忘记AGI而转向扩大LLMs技术的使用范围以及创造全新产品时,这反而会成为另一种实现AGI的路径,就如同现在LLMs技术得以发展是建立在互联网数十年产品化积累的海量数据上一样。

下面我们将对LLM-Native产品的底层逻辑、特点,以及如何创建等问题展开讨论。

二、产品视角下的LLMs技术

在开始讨论LLM-Native产品之前,我们需要对LLMs技术的特点进行分析,这里的分析将从产品视角进行,更具体来说,我们将从产品开发者和产品使用者两种视角来观察LLMs技术。

1.产品开发者视角

Mr.-Ranedeer-AI-Tutor:用400+行prompt实现教学机器人

2.产品使用者视角

Agent具备显著的自主性:规划、行动、使用工具

三、WelcometoHogwarts

LLMs技术的新特点必然会给产品工作带来变化,认识并接受这些变化的过程也许会像从麻瓜世界长大的巫师首次进入霍格沃兹——有趣、反常、但必要,下面我们将从用户、需求、产品、业务、市场等不同维度来介绍我们在开展LLM-Native产品工作时将要面临的变化,欢迎进入LLMs的产品新世界。

1.当用户=开发者

用户作为产品的开发者并不是一件新鲜事,由用户为产品开发插件、甚至优化产品功能“古已有之”,但是像LLMs产品这样,每个用户的每次使用都是在对产品进行“开发”的情况却是头一次出现。

由于上文提到的“语言即代码”和“需求即功能”特点,LLMs产品的每一个prompt,都会是一个对应特定功能、或者可复用插件,而当将Agent、UI生成等能力加入产品后,用户的开发能力将会得到更大提升。

生产力决定生产关系,在LLMs提供的强大生产力下,我们将迎来一个全民开发的时代,如果说互联网实现了信息自由,那么LLM-Native产品将实现开发自由。

FlowiseAI:通过简单的操作和prompt就能创建自己的应用

2.需求的无损传递与个性化满足

对于产品有这样一种表述:对用户需求抽象后的解决方案实现。那么从这个角度来看,产品功能其实是对用户需求的接收和翻译。

在实际产品工作中,无论是对需求的人为抽象还是对功能的人工设计,都无法实现用户需求的无损传递,而功能的标准化设计则注定其无法满足用户的个性化需求,那么不可避免的结果会是:

在产品的生命周期中,这三者体现出相互叠加促进的关系,最终的结果是产品功能越来越复杂、新用户进入门槛高、老用户因体验下降流失,这个过程是很多产品在增长过程中无法逃脱的“用户规模马尔萨斯陷阱”。从搜索到推荐,算法一直在试图让产品增长脱离这个困境,即努力让功能内化在算法中从而实现用更少的产品复杂度来实现更多的功能,而这正是LLMs最为擅长的,具体来说:

对于LLM-Native产品,由于“模型即应用”、“需求即功能”的特点,我们可以实现:

所以LLM-Native产品有很可能会打破产品设计的“用户规模马尔萨斯陷阱”,即用极简的产品设计在保持低使用门槛的前提下,个性化的满足复杂、海量的用户需求。

3.供给侧与消费侧改革

从经济角度来看,我们日常使用的绝大多数互联网产品都在围绕信息的生产、分配和消费进行设计,LLMs技术“需求即功能”和“语言即代码”的特点将对信息的供给和消费同时带来变革,具体如下:

a.在供给侧

b.在消费侧

4.从产品的算法到算法的产品

从业务角度看,传统的AI业务中,算法与产品是两个有关联但又有各自独立的工作环节,而对于LLMs的产品来说,由于“算法即产品”的特点,对产品功能的设计将逐渐等同于对算法能力的设计,这将在以下三个维度带来变化:

5.新的市场熵增周期

市场熵(MarketEntropy)用来代表市场上用户需求的无序程度(Figma的投资人KevinKwok提出),如果用户的需求变化速度更快,市场熵就会更高,其核心表述为:

显然LLMs技术将对市场熵产生广泛且剧烈的影响,带来新的熵增周期,这是本轮LLM-Native产品工作开展的一个基本外在客观事实,具体到当下,我们可以观察到:

我们正处在新一轮市场熵增的早期

在变革到来时,是否能够率先参考并利用这些变化来完成产品设计将会成为早期LLM-Native产品发展过程的胜负手。

四、变革中的那些确定性

1.信息的解构

对于信息内容来说,一个显著的趋势是新技术将带来基于原有媒介内容被解构并增强互动性后形成全新产品形态,其过程分为两个循环交替的环节:

2.通过制造稀缺

稀缺性是所有商品和服务都试图去设计的,其主要原因为:

稀缺性是互联网产品一直在努力追求但却不好获得的一种产品属性,因为这通常与互联网技术基因中的“免费原则”、“平等精神”背道而驰。

但是在通过稀缺性获取更高的注意力方面,LLMs的技术可能会带来突破:提供完全定制化的内容会比推荐算法带来的个性化内容具有更强的稀缺感(专属商品、服务当然会有更高的吸引力),从而更容易让用户交出自己的注意力。

从这个角度来看,对于LLM-Native产品来说,在单位内容中获取的用户注意力会更高,从而让用户的单位产品使用时长具备更高的经济价值。

3.满足控制感

追求掌控感是人类的天性,所以用户对产品的控制感是评价设计好坏的一个基本维度,在《设计心理学》中,控制感被描述为:

对于LLM-Native产品来说同样需要遵循控制感的设计原则,通过上面的分析,我们很容易发现LLMs将提供全新的控制感:

我们相信,对内容的控制感是一种即将被LLMs技术激活的潜在需求,这将会成为LLM-Native应用的一个重要差异化体验。

4.需求抽象程度不断提升

所有产品都是围绕某种抽象程度的需求来设计的,而通过观察对解决相同类型问题的产品发展历程,我们可以看到一个显著的趋势:产品所对应的需求抽象程度不断提高。

两个具体的例子:

显然,LLMs技术将带来更高的需求抽象程度:

所以,更高的需求抽象程度是LLM-Native产品的必然发展方向,每一个需求都值得用更高的需求抽象程度来重新审视。

5.加工更高层级的智慧信息

LLMs是一种新型媒介,那么从媒介的角度分析,我们能得到一些有趣的确定性。麦克鲁汉在《人的延伸——媒介通论》中对媒介有两个重要的论述:

从这两个论述我们提出以下问题并给出回答:

问:LLMs延升的是人的何种能力?

答:LLMs延升的是人类的一些智慧能力,如语言理解、逻辑推理、信息构建等。

问:LLMs作为一种全新的媒介,其传递的信息是什么?

答:LLMs传递的是智慧化的互联网(或者说信息化)数据。事实上,有一种对LLMs的描述便是“一个高度压缩的互联网”。

综合上述内容,我们似乎可以对LLMs给出一个媒介版的定义:通过对互联网信息内容的压缩来延伸人类的部分智慧能力。

目前我们可以通过互联网公开的内容信息达到当前LLMs展现的智力,而更高智慧密度的信息内容也必然诞生更高智力,这些更高智慧密度的信息可能是:

五、创建LLM-Native产品的几个原则

以下是一些进行LLM-Native产品设计时可能有用的建议:

1.LLM-Native与模型自由

未来的AI生态中,通用大模型负责解决长尾问题,高价值的业务场景将由专业AI系统来解决,具体表示为下图:

模型类型-问题价值曲线

所以对于LLM-Native产品的工作来说,首先应该将专业模型加入工作计划表,其次要善于借助通用模型,最后要记住不要过分依赖通用模型。

2.找到自己的LLMs的能力光谱

我们在前文提到过“需求即能力”这一LLMs技术的特点,这个特点决定了不同的LLM-Native产品因其面向场景、解决的问题、面向的用户群体不同,而对模型能力的要求有所差异。

一个形象的比喻是:原子的特征光谱。即当我们将某种LLM-Native的产品对应到LLMs时,就像不同原子会显示出不同的特征光谱一样,此时应该能够列出一个明确的模型能力规格说明书,通过这份说明我们可以:

不同的场景对模型的能力要求会有很大的差别

所以,未来LLM-Native产品经理可能会有一项工作就是定义出自己场景的模型能力光谱,而这将是整个产品设计工作的起点。

3.利用LLMs的优势而非劣势

任何一项技术都有其技术优劣势,所以产品设计者一定要懂得扬长避短、顺势而为。

对于LLM-Native产品也是一样,我们需要找到LLMs的优点,基于这些优点来设计,并同时识别出技术的弱项,从而在产品设计时尽量规避,比如我们很容易可以整理出一些可以供参考的优劣势:

比如A16Z最近提出的AIGC应该面向概率型产品(probabilisticproducts)进行设计的观点,就是试图利用模型优势进行设计的一种尝试。

如何利用模型的概率性进行产品设计

也许,未来每个LLM-Native的产品经理都应维护一份LLMs的优劣势清单,在确定产品的功能设计后,都应该从LLMs技术的优劣势进行一次审核,看看是否做到了“趋利避害”。

4.生成器和系统2

使用LLMs进行生成是以指令为起点的,即:

指令->LLMs->内容&行动

最直观的指令是用户的prompt,也就是使用自然语言将需求表述出来,此时,需求=指令,但随着LLMs技术的发展,我们会发现:

一个愈发明显的趋势是用户需求和指令的分离,即会有一个专门的指令生成环节来连接用户需求和LLMs(Agent便是这种趋势下的必然产物)。

这里我们将接收用户需求并翻译为大模型指令的工作环节称为生成器:一个面向特定任务设计的,能够将用户的需求最大限度转化为模型生成时应当执行的行动集合的指令的工作模块。

生成器将用户的需求经过处理变成大模型的可执行的生成指令,生成器可以很简单,比如一个prompt模板,也可以很复杂,比如一个Agent再加上数据库,甚至也可以是一个模型,比如生成prompt。

“生成器与底层模型共同完成生成过程”这一范式具有更深的底层逻辑,即《思考,快与慢》一书中提出的系统1和系统2,底层模型将作为系统1,而生成器将作为系统2,二者形成一个整体系统,并分别适合用来解决不同类型的问题,系统1和系统2的概念也被OpenAI联合创始人AndrejKarpthy用来解释GPT的原理,与人类的系统1与系统2更加独立的关系不同,LLMs的两个系统存在显著的转化关系:

系统2的能力会不断被系统1内化,所以系统2需要不断被设计,而系统1则会不断增强。

六、LLM-Native产品的特点

下面我们将试图抽象出LLM-Native产品可能具有的特点,理解这些特点可以让产品方向的选择以及设计工作更容易和科学。

1.新问题

首先是新问题,LLM-Native产品需要面向新问题所对应的需求进行设计。什么是新问题呢?我们知道所有产品的价值基础都来自于对某种用户问题的解决,而新的技术范式通常会带来两类问题,即:

结合在前文市场熵的部分我们已经做过的说明,我们可以分析出这两类问题有如下特点:

很明显,第二类问题才是LLM-Native产品要面向的新问题。那么如何找到这类新问题?这里提供一些可供参考的定位方法:

通过技术、底层需求两个思考维度,我们还可以发现更多定义新问题的方法,这里由于篇幅原因不做赘述。

2.新形态

如同PC时代的网站、移动时代的APP一样,我们相信LLM-Native产品也会诞生自己的产品形态,虽然现在无法判断这个形态到底会是什么,但是已经有一些正在形成的演变趋势。

3.极简设计

这里的极简指的是产品表现层体现出的极简,更准确的描述应该是:极简设计+丰富能力。

用看似简单的产品形态来实现复杂多样的功能,这已经成为以LLMs为核心产品的特点,如果对这类产品进行功能清单梳理,大家会发现其核心使用流程所对应的功能都非常简洁,而其能够完成的任务或者具有的能力又极其丰富。

这种趋势是由前文提到的“需求即功能”特性决定的,由于LLMs理论上可以将任何信息通过压缩+预测nexttoken的范式进行生成,所以大量的产品功能无需暴露给用户。

但是值得注意的是,极简设计并不意味着能够帮助用户更快完成需求传递的功能和产品界面不再被需要,他们会以另一种形态存在于LLM-Native产品中。

4.动态功能

动态功能是指LLMs产品在使用时,其展现给用户的功能、界面并非是提前设计的,而是可以根据用户当时的需求进行动态生成,这个特点同样具有必然性:

Perplexity的Copilot功能:根据用户输入生成动态表单来明确需求

5.定制化产品

如同推荐带来了信息内容的个性化,我们相信LLMs技术将带来产品的个性化。

产品的标准化和需求的个性化是一组产品设计中的基本矛盾,用户天然希望产品为自己量身定做,而产品提供者则需要通过标准化来确保产品的生产和运营成本,我们在前文“用户需求的无损传递”中已经涉及到这个问题的讨论。

相比于软件范式下产品必须标准化不同,LLMs带来了“产品说不定也可以个性化”的全新机会,那么这将带来内容个性化后的新一轮产品革命,围绕“个人定制化产品”的理念,所有的已知产品都存在升级迭代的可能。

6.新交互

a.从告诉机器怎么做到告诉机器要什么

上一个交互范式的工作目标为“如何更好地告诉机器该如何遵循用户指令”(Command-BasedInteractionDesign),而新的AI交互范式下,工作目标将更新为“如何更好让机器知道用户想要什么”(Intent-BasedOutcomeSpecification)。

b.自然语言成为一个新的交互维度,但不是交互本身

我们上文提到过LLMs具有通过自然语言来驱动产品使用流程的特点,这意味着自然语言从交互的内容成为了一种交互设计的维度。

而随着ChatGPT的出现,产品的设计出现了一种“万物皆为Chatbot”的设计趋势,但是实际上Chatbot只是LLMs在交互中的一种展现形式,更为本质的问题在于自然语言从交互的内容变成了交互的方式。

对此问题,Notion的UX研究员LinusLee在其《GenerativeInterfacesBeyondChat》的talk中有过论述,其核心观点为:

自然语言交互提供了更好的灵活性,但也损失了产品的可理解性

所以对于LLM-Native产品来说,一方面我们将观察到,自然语言将在交互中出现并承担重要的角色,但同时我们也应尽量避免陷入“LLM-Native=Chatbot”的设计误区。

7.面向不确定性进行设计

在前文中,我们提到过LLMs具有能力黑盒和生成内容不可控等特点,这些特点将带来产品使用过程中的巨大不确定性。

对于传统的软件产品思路,交互一定要是清晰、准确、具体的,而这与LLMs的生成技术显然存在冲突,所以LLM-Native产品势必会展现出一种新的交互思想,即:面向不确定性设计,这将展现出的工作特点为:

七、早期LLM-Native产品的观察

已经有越来越多令人兴奋的新产品开始出现,下面将从一些可观察的市场信息中尝试抽象出某些共性和趋势,以期为正在面向LLM-Native理念进行设计的产品工作提供一些有价值参考。

1.社交

马克思曾说“人的本质是一切社会关系的总和”,从这个角度而言,LLMs的出现对社交产生的一个重大影响在于:在社会关系中,增加了AI这一全新的社交维度。

这使得社交产品有了全新的想象空间,具体表现为除了人-人社交的角度外,我们还可以从如下角度进行设计:

注:机-机社交是一个尚未得到足够重视的方向,该方向下人类可以为AI智能体们设计各种活动和任务,并以上帝视角进行观察和干预实验,比如用LLMs模拟人类成长过程中不同类型事件对其后续行为可能产生的影响。

Inworld:提供游戏中的智能NPC服务,已经具备了机-机交互的观测价值

从产品价值维度来看,目前的社交服务主要提供两种价值:

那么AI维度的加入后,我们可以得到这样一张有趣的产品定位表,并能够对已有的产品进行定位:

社交产品设计的维度变得更加丰富

所以对于LLM-Native的社交产品来说,我们显然将面向一个更加广阔的设计空间,比如设计一个能在图中覆盖多个社交维度以及价值维度的新型产品。

2.内容

前文中已经提到过,LLMs技术将为信息内容产品在生产端、消费端带来一系列变化。

这当然只是一个很初级的产品化尝试,LLM-Native的内容产品更大的想象力在于,当更多垂直的LLMs在各自领域开始落地、不同模态的生成能力正在产品端进行融合、LLMs的生产和推理成本大幅降低时,我们应当能够看到与现在完全不同的内容产品形态,也许是:

Talkie:提供了一种基于角色扮演的多模态游戏化内容形式

3.工具

对于效率工具来说,一个显著的产品趋势是:以Copilot产品形态为过渡,实现AI-worker。

这里的底层逻辑在于上文中提到的一个概念:模型需要对某种程度的人类智慧数据进行压缩,才有可能涌现出同水平或者更高水平的智能。

显然对于效率工具类产品来说,如何对AI生成的内容进行处理、优化从而成为人类标准可用的工作成果,就是一种智慧程度更高,并且尚未被信息化的数据。

所以Copilot产品形态将会以已有的LLMs模型能力为基础,通过人机协作工作方式提升效率的同时,搜集更高智慧程度数据搜集的产品,而这也将成为“从LLM-Native走向AGI”的必由之路。

Copilot产品形态的要点在于:

对于LLM-Native的效率工具产品来说,可能的产品设计思路会分为三个模块:

GithubCopilot:最早也是最为典型的Copilot产品

八、总结

本文尝试对基于LLMs技术的LLM-Native产品进行分析,试图探讨如下几个问题:

具体而言:

我们从使用产品视角出发,尝试对LLMs技术在产品维度的特点进行抽象,并基于这些特点对LLMs技术对产品工作可能带来的变化进行了推演,结合在新技术冲击下依然有效的产品逻辑,我们给出了一些创建LLM-Native应用的可能原则以及目前可见的LLM-Native产品特点,最终通过对几个经典产品方向上LLM-Native产品的观察尝试给出未来的产品工作建议。

需要强调的是,LLM-Native产品将是一个至少与互联网产品、移动互联网产品同等级别的宏大主题并正处于高速发展中,我们既难以观察其全貌,也无法对其发展进行有效判断,所以本文的目标是提供一些对LLM-Native产品工作有价值的问题并提供对这些问题可能有帮助的观察和思考,而非输出观点和提供预测。

感谢Kiwi参与创作,文中的很多观点来自与行业内投资人、产品经理以及算法工程师朋友们的讨论,在此不再一一致谢。

THE END
1.提高算法学习能力的10个实用方法随着人工智能和大数据时代的到来,算法学习变得越来越重要。然而,对于很多人来说,算法学习并不是一件容易的事情。那么,有没有什么方法可以帮助我们提高算法学习能力呢?下面将介绍10个实用的方法,帮助你在算法学习的道路上更进一步。 1.打牢基础知识 在学习算法之前,首先要打好基础知识的基础。掌握计算机科学的基本概念https://wenku.baidu.com/view/7ced7f94adaad1f34693daef5ef7ba0d4a736de9.html
2.如何提升数据结构方面的算法能力数据结构知识和算法知识是我们实际解决解决问题的基元,如何提高算法能力就涉及如何将数据结构和算法应用于特定的场景,以及在实际使用中该如何选择对应算法。 算法的精髓在于分析和比较,要想清楚在什么时候,为什么使用这个算法。 比如说平衡搜索树,我们为什么要平衡呢?因为平衡可以减小树的最大深度,从而减小搜索时的最坏时http://m.hqyj.com/emb/Column/20209920.html
3.如何通过刷题提高算法能力归思君如何通过刷题提高算法能力 第一步:明确题目的意思 第二步:列出所有可能的解法,寻找最优解 第三步:实操,写代码,并优化 第四步:反馈并测试解法 提醒:要理解代码的思路后再开始背写,而不是一边看题解,一边敲代码。这不是程序员,这是打字员!https://www.cnblogs.com/EthanWong/p/12465697.html
4.wcgw:我的Java语言学习资料库,旨在提高我的算法和文库能力2. **算法理解**: 提高算法能力是Java学习的关键部分。这可能包括排序算法(如冒泡、选择、插入、快速、归并排序)、查找算法(如线性查找、二分查找)、图论、动态规划、贪心策略等。资料库可能包含详细的算法讲解、练习题目和解题思路,帮助开发者提升解决实际问题的能力。 3. **数据结构**: 数据结构是存储和组织数https://download.csdn.net/download/weixin_42121725/15881805
5.AI算法能力提高班AI算法能力提高班 分享AIGC论文,模型优化算法工程能力提高 专栏成员 61 文章 46348 阅读量 14 订阅数 全部文章(61) 模型(47) 数据(21) image(13) aigc(12) 服务(11) 视频(9) 性能(9) 设计(8) 网络(8) 算法(7) 基础(6) 原理(6) 部署(5)https://cloud.tencent.com/developer/column/100730
6.AppStore上的“Leaflet算法分析:算法复杂度、算法性能等。 数据结构与算法分析是计算机科学的基础,是所有计算机程序的基础。掌握数据结构与算法分析可以使程序员更加高效地编写程序,提高程序的质量和性能。 【题解】 精选了具有代表性的算法题,使用Swift语言实现相关的数据结构与算法分析 https://apps.apple.com/cn/app/id1420814118
7.随着计算能力的提高和算法的改进的翻译是:Asthecomputinga爱心糕点 Compassion cakes and pastries[translate] aI am dubious 我是半信半疑的[translate] aStupid. Love 愚笨。 爱[translate] a随着计算能力的提高和算法的改进 Along with computation ability enhancement and algorithm improvement[translate]http://eyu.zaixian-fanyi.com/fan_yi_1813129
8.提高海鸥优化算法寻优能力的改进策略及其应用从这些改进措施来看,虽然SOA算法性能有了一定程度的提升,但全局与局部搜索的协调能力有待加强。另外,局部搜索方式比较单一,缺乏灵活性,导致优化性能减弱。因此,如何提高SOA算法的寻优能力值得进一步研究。 基于上述,本文从平衡全局与局部搜索能力出发,设计了3种提高SOA算法寻优能力的改进策略。首先,改进非线性收敛因子与https://xk.sia.cn/cn/article/doi/10.13976/j.cnki.xk.2022.1438?viewType=HTML
9.加强局部搜索能力的人工蜂群算法认知能力平衡算法的勘探和开发能力.另一方面,在侦察蜂搜索阶段,采用禁忌搜索策略,将局部极值存入禁忌表中,帮助算法跳脱局部最优解,达到避免算法早熟的同时加快算法收敛速度的目的.由于LSABC算法的改进与粒子群算法相似,为验证LSABC算法的寻优性能,针对8个经典基准函数,选取标准ABC算法、PSO算法、EABC算法、RLPSO算法及https://d.wanfangdata.com.cn/periodical/henansfdxxb202102004
10.提高计算能力策略(精选十篇)通过本课题的研究,分析影响小学生计算能力的各种因素,认真研究提高小学生计算能力的策略,努力提高学生计算能力,培养学生的口算、心算、估算和笔算能力,实现算法的多样化与优化的有机结合,促使学生在生动活泼、轻松愉快的学习中慢慢喜欢数学,对计算产生兴趣。从而提高学生的计算能力,为学生今后的学习奠定扎实的基础。 https://www.360wenmi.com/f/cnkeywa6jh8p.html
11.主任崔士鑫:用主流价值导向驾驭“算法”,全面提高舆论引导能力习近平总书记在中央政治局第十二次集体学习时明确要求,“探索将人工智能运用在新闻采集、生产、分发、接受、反馈中,用主流价值导向驾驭‘算法’,全面提高舆论引导能力”。这为我们在全媒体时代,充分利用好大数据、云计算、人工智能等新技术,推动主流媒体向数字化、网络化、智能化发展,实现单向式传播向互动式、服务式、https://www.thepaper.cn/newsDetail_forward_4645624
12.算法工程师职业规划总之,作为一名算法工程师,职业规划是非常重要的。你需要定义自己的职业目标,提高技能水平,积累项目经验,建立良好的职业关系,持续学习和成长,提高沟通能力,寻找职业发展机会。通过这些措施,你将成为一名成功的算法工程师,并取得职业生涯中的巨大成功。 【特别提示】 https://www.xycareer.com/knowledge/8907.html
13.因果推断助力业务增长最新实践演讲介绍:图事后可解释性常因无法解决分布外泛化问题(OOD)而被诟病。针对此,本报告提出了:①一种基于对抗鲁棒性的抗 OOD 评估指标;②一种提高算法抗 OOD 能力的网络-数据联合解释范式。上述指标和范式可以极大地缓解 OOD 问题所带来的性能下降和应用限制。 https://hub.baai.ac.cn/view/31538
14.一种增强复杂网络抵御相继故障能力的路由算法研究AET通过在BA无标度网络及WS小世界网络中进行的实验,验证了在故障节点数不多的情况下改进的路由算法能够大大提高网络对相继故障的抵御能力。但是当网络中初始故障节点数增多时改进路由算法的效果下降比较明显,同时由于改进路由算法的应用,致使网络的初始传输效率有所降低,这也体现了网络的可靠性与有效性之间的辩证关系。http://www.chinaaet.com/article/3000019890
15.增强开发能力的改进人工蜂群算法文献[6]提出自适应步长的快速ABC算法,使旁观蜂搜索阶段的周边食物源参数自适应化,并结合反向学习策略改进雇佣蜂搜索阶段。文献[7]提出在基本ABC算法全局搜索公式中引入反馈机制,直接搜索最优解可能存在的区域,以提高算法的开发能力和收敛速度;加入线性微分递增策略,平衡算法各个阶段的开发能力和探索能力;根据丛林法则,https://www.fx361.com/page/2019/0801/5377815.shtml
16.一年级数学《100以内数的认识》教学设计(精选10篇)【设计意图:因为有了前面的教学铺垫,这一环节更重要的是训练学生自己的表达与交流能力,同时注重对算法多样化的渗透,引导学生选择又对对快的方法。】 三、巩固提高 (一)基本练习。 1、P48的“做一做”第1题:做好后,请个别学生说出方法,提示:利用加减法的关系,可以算得又对又快。 https://www.ruiwen.com/jiaoxuesheji/2672061.html
17.数据闭环研究:自动驾驶3.0阶段,做好端到端,赢取数据掌控权福瑞泰克具备软硬一体平台化开发和量产交付能力,已打通了“规模数据获取-数据处理体系-自动化迭代”的数据闭环链路,其ODIN智能驾驶数智底座支持量产的大规模数据闭环系统,既包括福瑞泰克大规模量产数据基础,也有部署于国家超算中心算力平台,并全面形成了支持算法演进的完整数据闭环体系,可同步完成感知算法的迭代演进与规控https://www.dongchedi.com/article/7262526986319610420
18.覆盖数万研发人员,字节跳动首次公开效能度量核心技术!作为供给侧动力源的研发效能度量团队,主要有三个方面的工作:做数据,使 ADLM 研发效能数仓领域完备、数据置信;做产品,通过更丰富、易用的数据可视化分析工具,辅助数据分析师高效地完成数据分析工作;做算法,通过不断构建并打磨底层算法库,使描述型分析和诊断型分析完全自动化,并在此之上构建更高维度的分析能力。 https://www.infoq.cn/article/oiYyLTdpp4Yx1iFhs4A8