运用菱形十字搜索算法提高快速运动估计算法的性能

菱形十字搜索算法(DCS)算法是在DS算法基础上改进而来,DCS的匹配模板是建立在两种不同的搜索模板之上的,即大菱形十字型(LDCSP)和小菱形十字型(SDCSP),如图1所示。其中,十字型可以对应于实际的运动的矢量分布,而交叉型则是为了加速搜索效果。

DCS算法在进行运动估计匹配运算时,有三种可能的情况:

(1)若MBD点位于LDCSP中心位置,说明图像是静止的,DCS算法一步结束;

(2)若MBD点位于LDCSP小十字位置,说明图像的运动较小,则在此基础上按照SDCSP模板反复进行交叉搜索。

(3)若MBD点位于LDCSP大十字位置,说明图像的运动较大,则在此基础上按照LDCSP模板反复进行交叉搜索。

由此可以看出,DCS算法的优点是,可以根据图像的运动类型(如上述三种情况),白适应选择下一步相应的搜索模板,使搜索与图像内容有关(基于内容的搜索),从而得到较好的搜索效果;DCS算法的搜索并不一定要经历模板由大到小的必然过程,有时一步即可完成搜索;用DCS搜索时,十字形模板对应于实际的运动矢量分布,交叉形模板则有准确性“聚焦”特性,这从本质上体现了DCS是粗定位和准确定位的有效结合。

视频图像的运动矢量大部分为零矢量或运动很小的矢量。运动矢量为零的块称为静止块;运动矢量很小的块(以搜索窗口中心为圆心,两像素为半径的圆内)称为准静止块:而其他的称为运动块。如果有超过80%运动矢量很小的块可被看作静止或准静止块。因此,可设一个阀值T,当运动矢量的值小于T时,可用SDCSP搜索法直接进行精确定位,找出最优点;当运动矢量的值大于T时,可用LDCSP搜索算法找出最优点。

3自适应运动估计算法

结合上述DCS算法和阈值的确定,可采取先对视频图像的运动块进行阈值的判断,再根据判断结果进行最佳匹配块的搜索。具体搜索步骤描述如下:

Step1:判断当前块运动矢量MVp和阈值确大小。若MVp≥T,则进入Step2;若MVp

Step2:用LDCSP在搜索区域中心及周围8个点进行匹配运算,然后判断,找出MBD点。若MBD点位于中心点,说明宏块是静止的,DCS算法一步结束,得到最优匹配块;否则进行Step3。

Step3:若MBD点为LDCSP模版的小十字处,以该点为中心构建SDCSP进行匹配计算,若MBD点位于中心点,所得MBD点为所求。否则,进入Step4。

Step4:若MBD点为LDCSP模版的大十字处,以该点为中心构建LCSP进行匹配计算,进入step2。

Step5:用LDCSP在搜索区域中心及周围5个点进行匹配运算,然后判断,找出MBD点。若MBD点位于中心点,所得MBD点为所求;否则继续Step5。

算法流程图如图3所示。

实验结果及说明

4.2信噪比的比较

对标准测试序列claire和carphone序列进行测定,计算PSNR得表2。

5结束语

长沙市望城经济技术开发区航空路6号手机智能终端产业园2号厂房3层(0731-88081133)

THE END
1.机器学习入门集成学习之梯度提升算法大多数的提升方法都是改变训练数据的概率分布(训练数据的权值分布),针对不同的训练数据分布调用弱学习算法学习一系列弱分类器。 对于提升方法来说,有两个问题需要回答:一是在每一轮如何改变训练数据的权值或者概率分布;二是如何将弱分类器组合成一个强分类器。 https://blog.csdn.net/m0_53294028/article/details/137434872
2.GBDT(梯度提升决策树)算法(详细版)腾讯云开发者社区参数v称为学习率,通常学习率会选择较小的值,小于0.1能够提高算法的泛化能力,但是越小的学习率也会增加算法的迭代次数。 六、总结 本文简单介绍的boost提升方法和讲解了Gredient Boost框架和Gredient Boost框架的应用GBDT,并且介绍了提高算法泛化能力的方法,正则化。还有一些内容本文没有提及,比如Gredient Boost中M回归问https://cloud.tencent.com/developer/article/1082482
3.组合优化的算法优化:如何提高算法性能51CTO博客组合优化的算法优化:如何提高算法性能 1.背景介绍 组合优化问题是一类涉及到寻找最佳组合或分配的问题,它们在计算机科学、数学、经济学、工程等领域具有广泛的应用。这类问题通常是NP难题,因此需要使用高效的算法来解决。在这篇文章中,我们将讨论如何通过优化算法来提高组合优化问题的性能。https://blog.51cto.com/universsky/9143743
4.Python机器学习:通过scikitlearn实现集成算法有时提高机器学习算法的准确度很困难,本文将通过scikit-learn介绍三种提高算法准确度的集成算法。本文选自《机器学习——Python实践》一书。 在现实生活中,常常采用集体智慧来解决问题。那么在机器学习中,能否将多种机器学习算法组合在一起,使计算出来的结果更好呢?这就是集成算法的思想。集成算法是提高算法准确度的有http://www.broadview.com.cn/article/419370
5.算法推送机制下“信息茧房”效应的思考与对策澎湃号·媒体其次,在目前阶段,算法推送的技术十分有限,通过算法推荐的内容,往往过于窄化和同质化。算法推送技术的限制导致推荐内容过于单调,往往不能像人类之间传递信息一样更具多元思考,算法参数的单调限制了推荐结果的广度。现阶段提高算法的质量尤为重要,从国家层面来看,需要对大数据及相应技术进行评估与测试。美国曾出台《数据质https://www.thepaper.cn/newsDetail_forward_9731140
6.《小猿搜题》的搜索算法如何工作?二、搜索算法概述 《小猿搜题》的搜索算法主要应用于题库的搜索,通过输入关键词,为用户快速匹配出与其相关的题目。算法的核心在于高效地处理大量题库,并在毫秒间返回结果。 三、关键词处理 搜索算法首先对输入的关键词进行预处理,包括去除停用词、进行词形还原等。这些处理有助于提高算法对关键词的识别精度。接下来,https://www.sousou.com/wd/26922.html
7.提升联邦学习通信效率的梯度压缩算法通过在MNIST和CIFAR10数据集上的实验验证, 本文提出的算法在通信量、收敛速度和正确率3个方面都要由于传统的FedAvg算法和稀疏三元压缩算法. 由于梯度压缩会略微改变原始梯度的方向, 在未来我们将针对不同的压缩方法对投影聚合的方式做进一步的研究, 进一步提高算法的有效性.https://c-s-a.org.cn/html/2022/10/8748.html
8.趣学数据结构(3)提高算法效率。很多问题的基础数据结构运行效率较低,需要借助高级数据结构或通过改进数据结构来提高算法效率。 通过学习数据结构,更加准确和深刻地理解不同数据结构之间的共性和联系,学会选择和改进数据结构,高效地设计并实现各种算法,这才是数据结构的精髓。 https://www.epubit.com/bookDetails?id=UB6c782ee9d2469
9.王乐怡应用个性化推荐算法的网络平台在著作权侵权中的注意义务然而,推荐算法的应用导致网络平台与著作权人之间利益保护的平衡格局发生了变化,提高算法推荐平台的注意义务因此具有合理性。在过滤技术日趋成熟的情况下,将平台是否采用了适当的过滤措施作为判断其是否履行了合理注意义务的因素是网络著作权法必然的发展趋势。https://www.jfdaily.com/sgh/detail?id=753384
10.关于学习计划(精选20篇)算法是机器学习的核心技术,优化算法可以进一步提高机器学习的效率和精度。机器学习计划需要加强算法研究,优化各种算法并推广应用。我们需要不断提高算法的准确性和鲁棒性,在保证效率的同时提高模型的健壮性。同时,我们还需要关注算法的可解释性,为用户提供更可靠的服务和更优质的用户体验。 https://www.yjbys.com/xuexi/jihua/3637849.html
11.科学网—[转载]基于强化学习的数据驱动多智能体系统最优一致性4.2 提高算法的精度和速度 在数据驱动技术中利用actor和critic神经网络进行估计,需要考虑估计精度的问题,如何更好地提高神经网络的估计精度也是一个值得深入探索的研究方向。在多智能体协同问题的研究中,通过强化学习算法求解最优的控制策略的方法大多可以保证结果是严格收敛的,但在保证估计精度准确的同时无法保证收敛速度,https://wap.sciencenet.cn/blog-951291-1276281.html
12.什么是优化,优化的定义1、算法优化:这是针对算法本身进行的优化,旨在提高算法的执行效率,可以通过改进数据结构、选择更高效的算法或者利用并行计算等方法来提高算法的性能。 2、系统架构优化:这是为了提高整个系统的性能和可扩展性而进行的优化,可以通过调整系统的硬件配置、优化软件设计或者引入缓存机制等方法来提高系统的性能。 https://www.kdun.com/ask/126071.html