新材料研发智能化技术发展研究丨中国工程科学新材料新浪财经

本文选自中国工程院院刊《中国工程科学》2023年第3期

作者:宿彦京,杨明理,祝伟丽,周科朝,薛德祯,汪洪,谢建新

新材料是经济社会发展的物质基础,高新技术和高精尖产业发展的先导。未来新材料研发智能化将成为材料领域主要的发展模式,相应关键技术发展程度、基础设施与支撑平台建设水平、多学科交叉的复合型人才培养质量,将决定新材料领域原始科技创新能力,对高新技术发展产生深远影响。

一、前言

新材料是经济社会发展的物质基础,高新技术和高精尖产业发展的先导。发达国家高度重视新材料研发和产业化发展,提出了一系列旨在加速新材料发展的研究计划,推动了大数据、人工智能(AI)技术在材料领域的应用,逐步构建了新材料研发智能化技术体系,正在形成有利于智能化关键技术研发与应用的科技、社会、市场生态。未来5~10年,新材料研发智能化将成为材料领域主要的发展模式,相应关键技术发展程度、基础设施与支撑平台建设水平、多学科交叉的复合型人才培养质量,将决定新材料领域原始科技创新能力,对高新技术发展产生深远影响。

新材料研发智能化以材料大数据为基础、AI为核心,融合材料计算设计和实验技术以开展材料高维空间全局寻优;通过材料研发–生产–应用全链条的协同创新和一体化发展,显著提升新材料研发和应用效率。构建高效计算设计、先进实验、大数据、AI等融合的新材料研发智能化技术体系,是变革材料研发模式、提高新材料工程化应用水平、推动材料产业高质量发展的有效途径;建设材料数据资源体系、智能化研发基础设施支撑体系,将筑牢新材料研发智能化的发展基础,促进材料信息化、数字化、智能化发展。上述举措的实施,有助于破解高新技术、高端关键材料“卡脖子”困境,增强关键材料和高端构件自主保障能力。

近10年来,新材料智能化技术发展迅速,颠覆了新材料的研发理念和模式。例如,机器学习与材料计算融合,有望突破材料跨尺度计算难题,实现材料多尺度、全流程的智能化计算模拟和设计;AI与材料实验融合,推动实验技术朝着自动化、自主化、智能化方向发展,提升了新材料实验发现及验证的效率与水平;大数据和AI在新材料研发中的广泛应用,推动了材料研发技术、研发范式的变革,为实质性解决材料研发效率低下这一瓶颈提供了新途径。

针对新材料研发智能化技术体系构建问题,梳理国内外发展现状,分析面临的发展挑战,提出技术体系构建途径以及支持发展的举措建议,以期为新材料研发智能化的技术实践与管理研究提供基础参考。

二、新材料研发智能化技术国际研究进展

(一)材料智能计算设计技术及软件

随着材料计算理论及相应算法的发展、计算机算力的提升,材料计算已经贯穿新材料研发的整个流程,成为新材料理性设计的重要手段和基础技术;支持材料物理和化学机制探索,建立材料成分–结构–性能之间的构效关系;支持材料成分筛选、结构设计、工艺优化,提高发现新材料的效率;支持材料性能优化、寿命预测,加速产品研发迭代并促进工程化应用。材料计算模拟与AI融合,提高了材料计算在新材料研发过程中的贡献度,相应研究范围持续拓宽,从解释实验、预测实验发展到替代实验,研究对象趋向多尺度、复杂和真实体系,应用范围从新材料研发链扩展到生产链、应用链。

AI技术快速融入材料计算,在多尺度计算、高通量计算、集成计算等方面进展明显。使用大数据和机器学习方法改进泛函,提高了密度泛函理论的计算精度和适用性。利用第一性原理计算的数据,通过机器学习构建原子间的作用势,已获得广泛应用。例如,基于第一性原理计算、深度神经网络、支持向量机等方法,构建碳的亚稳态物质相图并确定亚稳态材料的相对稳定性与合成域,为材料非平衡动/热力学计算、亚稳态材料设计提供了新手段。将数据驱动材料建模的思路应用到多尺度仿真框架,发展了多尺度有限元方法,提高了结构分析的计算效率,应用到纤维增强塑料等复合材料开发。机器学习在材料集成计算工程的多个方向获得应用,如材料微结构表征、多尺度建模、高保真数据生成及传递、基于数字孪生的智能制造等。

(二)材料自主/智能实验技术及装置

AI与实验的深度融合,推动材料实验朝着自动化、自主化、智能化方向发展,孕育着材料实验技术的新变革。世界首套材料自主研究系统(ARES)具有近100次/天的实验通量,与高效原位表征技术、逻辑回归算法降维参量网格相结合,从影响碳纳米管生长的10维参数网络中筛选出了决定碳纳米管壁层数的温度和烃压条件,按照不同的预设生长速率可控制备碳纳米管。基于ARES的增材制造自主实验系统],与注射器挤压打印成型技术、云端机器学习优化算法相结合,通过自主调节打印参数实现单层打印特征的直接写入,在不到100次实验迭代后完成预定的打印目标。基于即插即用模块的连续流动化学合成系统,将流动化学合成过程分解为可自由排列组合的模块,根据用户需求自由选择试剂、反应器、分离器、反应过程表征等模块,具有远程启动、监控进度、分析结果的能力,可依据测试结果进行自动优化。

被称为“移动化学家”的自主实验系统,将激光扫描、触摸反馈组合,实现实验室空间内的精确定位(空间精度为±0.12mm,取向精度为±0.005°);可同时响应10个维度的变量,在8天内自主完成688个实验,获得了一种新型的化学催化剂。针对多个材料性能目标进行协同优化的自主实验系统,可消除人员先验知识对相互冲突材料性能指标的主观偏向,实现多性能参数的协同平衡优化,使材料具有良好的综合性能。自主实验系统的应用,能够高效完成多维参量空间内的研究工作,应对更为复杂、高维化的新材料研发需求,使新材料的发现效率表现为类“摩尔定律”。

(三)数据驱动的材料研发与数字孪生

以材料大数据为基础、AI为核心的新材料研发智能化,孕育着材料科技和产业的变革,成为颠覆性前沿技术。多个国家从抢占未来科技制高点的角度,前瞻布局材料数据基础设施建设,积极研发材料AI核心软件。针对材料数据多源、多模态、多粒度、多维度的特点,研究材料数据存储技术、数据交换标准与协议、云资源管理技术等。应用非关系型数据库技术,提升材料数据存储系统的可扩展性,便于数据的个性化表达、高效存储及检索。基于自然语言处理算法实现机器的语义知识理解,直接从科技文献等文本语言中获取材料知识,支持新材料预测和发现。

以主动学习、贝叶斯优化为代表的自主决策技术,在对巨大材料探索空间进行有效采样的基础上,以较少的实验验证和迭代即可筛选出具有最优目标性能的材料,成为数据驱动新材料研发的通用技术策略。深度学习用于挖掘材料的复杂构效关系,提高新材料的发现效率。利用具有广泛适用性的主动学习框架,从数百万种高熵合金成分中开发了2种高熵因瓦合金(300K时热膨胀系数极低),展示了主动学习框架在小样本数据条件下、广域空间内优化多目标性能的潜力。基于神经网络的深度学习框架,能够预测数十种新的晶体结构及相应的分子材料特性,逆向生成分子合成路线以显著提升搜索效率。

将数字孪生技术用于复杂材料/器件服役性能优化,可完善材料/工艺的理性设计,驱动上游材料设计、下游制造过程的革新。以计算–实验–数据技术融合为特征的材料基因工程是解决新材料研发和应用效率低下问题的有效方法,大数据、AI等技术的应用更显成效突出。

(四)材料研发智能化平台和基础设施

建设网络化协同的材料研发智能化平台、基础设施等条件,是新材料研发智能化技术发展、规模化应用的直接需求。以美国材料基因组计划为例,实施初期(2011年)拟建15个创新平台,2015年扩大到45个,多个领域的科研机构、企业等参与创新平台建设;在自然科学基金会的支持下,建设界面材料分析发现、二维晶体材料、生物高分子材料、聚糖材料等智能化创新平台,革新材料制备/加工、表征/评价、理论/建模/仿真等研发模式及支撑条件,形成工具、代码、样本、数据、技术共享的良好生态。美国国家标准与技术研究院牵头,集成近百家科研机构和企业的材料数据、代码、计算工具等资源与服务,开发“材料资源注册系统”“材料数据管理系统”以支撑材料协同创新网络,实现材料高通量实验数据采集、计算建模软件工具的高质量集成,引领国际材料数据基础设施的发展;AI和机器学习应用到企业的89个项目,获得了可观的投资回报。

三、我国新材料研发智能化技术发展与应用现状

(一)材料高通量/智能计算与平台

开发了ALKEMIE、MatCloud、MIP、CNMGE等高通量/集成计算软件,具备微观–介观–宏观多尺度、并发式、自动流程的计算能力,推动材料高通量计算设计技术进入国际先进行列。在天津、长沙、广州等国家超级计算中心建立了材料高通量计算平台,提供高通量计算、数据处理一体化技术,支持用户在互联网、云计算环境下开展大规模计算的远程信息交互,为材料智能计算技术的快速发展筑牢了基础。

(二)材料高通量/自主实验与平台

研发了薄膜、粉体、块体、复合材料等的高通量制备技术和30余种关键装置,涵盖材料芯片、粉体阵列,凝固、锻造、热处理等工艺,提高了新材料的实验筛选及发现效率。研发了材料高通量表征、服役行为评价技术及装置,基于同步辐射的高通量白光阵列散/衍射技术可提高材料成分、结构表征速率约100倍。建立了网络化的材料高通量制备实验平台,技术及装备水平达到国际领先。

面向新材料自主研发与智能发现的需求,研发了固液异相的自动化、数字化反应平台,整合了基于操作栈的硬件环境、由化学方案描述的语言层、数字化控制系统,可控制无人值守数字化实验流程,为自主实验系统构建确立基础。集成移动机器人、化学工作站、智能操作系统、数据库以构建数据智能驱动、覆盖全流程的“机器化学家”平台,实现大数据、智能模型共同驱动的化学合成–表征–测试全流程的自主化,形成的智能研发能力可用于光催化与电催化材料、发光分子、光学薄膜材料等。

(三)材料大数据技术与平台

数据驱动的新材料研发技术发展较快,率先在高性能金属材料、高熵合金、高温合金等的研发上取得应用突破,部分实现了工程转化和应用。整体来看,我国材料AI应用技术达到国际先进水平。

(四)应用成效

材料基因工程、智能化技术在前沿新材料探索与发现方面获得重要进展。利用材料高通量计算和数据技术,在近4×104种材料中发现了8000余种拓扑材料,超出历史上发现拓扑材料数量的10倍。发现了新型无机塑性半导体Ag2S、InSe,研制出兼具良好塑性与优异热电性能的Ag2S基无机半导体材料,开辟了无机塑性半导体和无机柔性热电器件的新方向。研发出国际上使用温度最高、强度最高、具有良好热塑成形性能的高温块体金属玻璃Ir-Ni-Ta-(B)。

在高端关键材料研发和工程化应用方面也取得了一系列进展。基于高通量制备与表征、数据挖掘等技术,开发了用于强光照明光源器件的高热导率Ce:YAG荧光陶瓷,使可量产光源芯片的功率、光通量等指标超过国际先进水平。开发了高性能铈基稀土永磁材料,形成5000吨级产能,促进了高丰度稀土的平衡利用。自主研发了新型结构分子筛催化材料,其反应活性、选择性超过国外同类产品,在超大型乙苯生产装置上实现工业应用。应用包括高通量计算、高通量实验、组织性能预测、工业应用在内的全链条技术,研制了铝基复合材料及大尺寸构件,在重大空间装备上实现在轨应用。材料基因工程技术加速了钛基合金结构件的研制过程及工程化,部分构件率先实现工程应用。研制的耐热腐蚀镍基单晶高温合金叶片应用于国产重型燃气轮机,高强耐热镁合金、舱体铸件等通过工程试验考核。

四、我国新材料研发智能化技术发展面临的挑战

新材料研发智能化技术的兴起和发展,为我国材料科技和产业带来了机遇、创造了条件。虽然我国在此领域取得了可喜进展,部分技术甚至达到国际先进水平,但整体来看在思想理念、关键技术、基础设施、应用范围等方面仍存在若干不足;关键技术、核心软件受制于人的局面并未实质性化解,部分新兴领域和重要方向尚属空白。面向材料领域中长期的高质量发展要求,新材料研发智能化技术攻关面临严峻挑战。

(一)材料研发模式变革滞后于智能化技术发展

在我国,传统的“经验+试错”研发理念及模式仍是材料科技和产业的主流。针对新材料研发的战略布局不明晰、资源保障缺乏稳定性,以“智能化”为核心要素的高水平团队和领军人才不充足,都导致系统性变革新材料研发理念及模式的条件仍不具备,材料智能化技术的综合水平仍滞后于国际先进。世界主要工业强国积极推动材料智能化发展,加速变革材料研发及应用模式,建立了新的比较优势;在此背景下,我国材料行业参与国际市场竞争面临着增量阻碍,与这些工业强国材料研制能力差距加大的风险不容忽视。

(二)材料研发智能化关键技术存在明显短板

我国材料计算设计关键软件长期依赖进口的局面并未打破,国产软件虽有提升但差距依然存在,自主保障的能力和水平不够。在材料数据库建设方面,碎片化、孤岛化现象突出,数据生产、管理、共享的机制与模式不健全;加之数据基础设施建设存在统筹规划和部署不深入的情况,使材料计算软件、数据资源规模等成为材料创新发展“短板中的短板”。具有实力、长期坚持软件开发及数据库建设等基础性工作的科研队伍不够稳定,资源投入的连续性不足,市场化和商业化发展生态有待形成,制约了材料计算核心软件自主研发、数据资源整合的推进步伐,成为新的国际竞争形势下材料领域发展的隐患与掣肘。

(三)材料研发智能化关键装备存在受制于人的风险

我国材料科学研究、新材料研发所需的高端装备较多依赖进口。既需要高额的资金投入,也很难直接获得国际一流的高端装备,不利于材料科技原始创新和重大突破。AI技术与材料研发装备的融合趋势,蕴含着新一代高端装备的出现机遇以及对传统技术与装备的替代性。在此背景下,自主实验高端装备、智能软件的国际市场蓬勃发展,新的装备市场准入条件正在形成。相比之下,我国新一代高端装备和智能软件的市场化发展节奏较慢,若不及时加速,可能再次受制于人。

(四)材料研发智能化基础设施缺口严重

五、我国新材料研发智能化技术体系的构建途径

(一)材料智能计算设计技术与核心软件

1.面向新材料研发的计算设计技术与核心软件

发展从微观、介观到宏观尺度的材料体系计算方法、算法和核心软件,建立涵盖原理、方法、算法、软件、应用的开发链和发展生态。研究适用于特定材料体系的计算新方法,凸显技术特色、建立技术优势。开发基于AI的跨尺度计算方法,拓展跨尺度计算的应用范围。

2.面向材料制备加工、产品制造、服役评价的模拟仿真技术与应用软件

研究多物理场与材料交互作用原理,开发材料制备及加工工艺优化、产品制造流程模拟、多场耦合作用材料服役行为及失效过程的计算模拟技术与应用软件。面向材料研发链、生产链、应用链,按照集成计算材料工程的顶层设计和架构设计,建立支持材料全生命周期的计算模拟系统。

3.材料智能计算核心算法与软件

研发材料高通量计算与AI相结合的基础算法及软件,构建功能完善的高通量智能计算系统。针对材料结构和性能,开发高效计算工作流,适应新材料设计和筛选的多样性、专业化、高效率需求。面向新材料设计、制备、加工、服役等工程应用以及融合AI技术的需求,发展自主设计、筛选、迭代算法,建立集成计算材料工程核心软件和工业软件。

(二)材料自主/智能实验技术与高端装置

1.材料自动/自主高通量实验技术与装置

2.材料自动化表征技术与装置

3.工程构件高效表征技术与装备

基于先进光谱、质谱、能谱、磁探测、应力/应变检测、电镜、先进光源等实验装置,开发空间尺度覆盖纳米至米级的材料及构件全域高通量表征技术。发展材料大尺寸全域成分–结构–工艺–性能–服役的原位统计映射模型,提升材料产品、工程构件的表征能力。

4.极端复杂环境材料服役行为智能评价装备

发展极端复杂环境材料服役行为、失效过程的计算模拟与机器学习技术,基于数字孪生的材料服役与失效智能评价及预测技术,提升加速模拟实验的等效性。研发多环境因素耦合材料服役行为高效评价、损伤演化的多尺度关联实验技术,提高材料服役行为评价实验效率和寿命预测准度,加速新材料的工程化应用。

5.材料智能实验和操作系统

发展材料实验数据自动采集、处理分析、实时交互,设备互联与组网等技术,开发网络化协同、模块化调度的材料智能实验操作系统。通过自主实验的互联互通、网络协同,实现材料制备–表征–评价全链条的自主化;通过计算–实验–数据的交互与融合,实现材料研发全流程的智能化。

(三)材料AI基础算法及关键技术

1.材料机器学习基础理论与核心算法

研究材料多体问题计算、跨尺度关联、多尺度耦合的机器学习理论,发展材料晶体结构深度图神经网络、可解释性图表示学习方法。研究材料多模态数据表示学习算法、材料知识推理及因果关系挖掘算法,形成数据驱动的机器学习、知识驱动的符号计算相融合的新材料发现与知识构建方法。

2.数据驱动新材料研发通用算法与软件

发展适应材料小样本、高噪声数据的机器学习算法,研发高维搜索空间和广域探索空间内的多目标全域优化技术。针对材料组织结构图像,研发深度学习和图像生成/优化的通用算法及应用软件。针对材料多尺度、多过程耦合的高维数据,开发机器学习通用软件。

3.面向AI应用的材料大数据技术

研发多渠道分散采集、多时序离散存储、多维度统合关联的材料大数据采集、处理、存储技术,多数据库节点融合且统一服务的混合云架构,材料大数据区块链与多中心化管理技术。攻关多源异构数据集成表示技术,建立适用于AI应用的材料数据库体系结构及数据库软件,促进材料数据资源的整合与应用。

4.材料数字孪生技术

开发材料数字孪生技术,实现“智能计算–数据建模–自主/智能实验”数据的实时双向交互能力。攻关材料按需设计、逆向设计、全过程综合优化等新兴技术,以计算–实验–数据融合支撑材料多尺度和全过程的智能化一体设计、全流程多目标协同优化。

(四)智能化研发平台与协同创新网络

1.材料计算设计平台

依托国家超级计算中心体系的计算资源,建设材料高效计算国家、区域、专业、行业平台,自主发展材料多尺度计算、高通量计算、集成计算等材料软件,面向计算流程优化、计算数据分析等专门AI软件。发展材料全流程模拟和仿真技术,覆盖材料发现、设计、开发、生产、服役等环节;建立国家材料计算平台网格共享系统,支持计算资源的高效共享。

2.基于大科学装置的材料高通量表征平台

依托先进光源、散裂中子源等大科学装置,针对材料成分及结构的超快表征、损伤演化动态原位表征等需求,开发高时空分辨技术和装置。研发海量实验数据高效处理、基于机器学习的材料三维精准成像等技术以及图像深度学习算法及软件,实现材料微观结构及损伤演变规律的跨时空、多维度、高效率的表征与评价。

3.材料数据基础设施和国家材料数据网络

开发多源异构材料数据自动处理技术,发展数据采集、存储、挖掘、应用一体化的大数据云平台技术,建设面向AI应用的材料数据基础设施。应用区块链、AI等技术,建立材料数据标识、引用、评价、交易技术及相应标准,形成材料数据生产、管理、共享机制。探索建立数据商业化发展模式,建设国家材料基础设施和数据网络。

4.材料研发智能化创新中心与协同创新网络

突破数据共享、资源共享、知识共享、任务分担、价值分配、网络互连、信息安全等方面的技术和机制瓶颈,以网络化互联互通材料计算设计平台、数据基础设施、智能实验系统支撑实现材料研发智能化关联技术与人力资源的高效协同。建设材料研发智能化创新中心、材料智能化协同创新网络,支持团队化的技术协作,有组织地开展科研技术攻关。

六、支撑新材料研发智能化技术体系发展的措施建议

(一)完善创新生态并给予稳定支持

发挥新型举国体制优势,采取“整体部署、分步实施、分层落实”策略,可在国家自然科学基金设立专项以支持基础理论研究,在国家各类科技计划中设立相应研发专项以促进关键技术攻关,在各类创新平台部署智能化研发内容以系统性强化新材料研发智能化技术应用。探索构建协同创新发展模式,形成多层次协作共享、多平台融汇贯通的生态环境。实施“国家材料基因工程计划”,加速材料智能研发理念变革,提供持续性的资源保障,为基础理论研究、共性关键技术研发、国家材料数据基础设施建设创造条件。适时发布促进新材料智能技术研发和应用的政策文件,支持地方参与新材料研发智能化专业技术和工程应用平台建设,鼓励金融机构和各类基金参与计算软件、数据库、高端装置发展,提高新材料研发智能化的商业化水平。

(二)构建全面协同的产业化发展环境

全面布局国产材料核心软件的研发工作,加快材料智能化核心技术的研发进度,优选亟需的高端关键材料开展示范应用,提高智能化研发关键技术的工程化应用水平。培育新材料研发智能化高端装置、核心软件商业化发展与应用的市场生态,推动国产装备和软件的标准化发展、规模化应用,确保关键技术、核心软件与装备的自主可控。发布激励性的税收优惠政策,支持材料企业数字化、智能化发展,促进科研与产业的深度融合;探索建立新材料智能化研发和应用的激励机制,注重基础研究层面激励的有效性,确保从事数据库建设、软件开发等基础性研发队伍的稳定性。可由行业龙头企业牵头成立新材料研发智能化专项基金,建立灵活的领投和跟投机制,发挥基金的引导和撬动效应;灵活实施股权投资、贷款贴息等投入方式,解决科研成果因关键保障不足而难以应用转化的问题。加强领域内外学术交流,探索技术融合、协同创新的新机制,创建科技成果高效转化模式,发挥新材料研发智能化技术的价值。

THE END
1.人工智能三大算法机器学习深度学习与强化学习的融合与应用前景在当今信息技术高速发展的时代,人工智能(AI)已经成为全球科技界关注的焦点。其中,机器学习、深度学习和强化学习被认为是人工智能领域中最重要的三大算法,它们分别代表了不同的研究方向和解决问题的手段。本文旨在探讨这三个关键算法,以及它们如何相互融合,并对未来的人工智能发展产生何种影响。 https://www.2gadecbu9.cn/xing-ye-dong-tai/433419.html
2.解析人工智能三大算法机器学习深度学习与强化学习的核心之旅解析人工智能三大算法:机器学习、深度学习与强化学习的核心之旅 人工智能三大算法是现代计算机科学领域中的重要组成部分,它们分别是机器学习、深度学习和强化学习。每种算法都有其独特的特点和应用场景,共同推动了人工智能技术的发展。 机器学习:数据驱动的革命 机器学https://www.fmovhaqkz.com/shou-ji/530948.html
3.人工智能三大算法机器学习深度学习与强化学习的融合与应用前景人工智能三大算法的概述 人工智能(AI)作为一个多学科交叉领域,其核心在于模拟人类智能行为。随着技术的发展,人们提出了许多不同类型的人工智能方法,其中机器学习、深度学习和强化学习是其中最为重要的三个子集,它们分别代表了从基础到高级别的人工智能技术。 机器学习https://www.xstkmqmgl.cn/zhi-neng/481943.html
4.人工智能基础知识速成一、机器学习概念与原理 什么是机器学习? 机器学习是人工智能的一个分支,通过从数据中学习和改进算法,使计算机系统在没有明确编程的情况下也能够自动地学习和改进。机器学习是一种实现人工智能的技术手段,能够让计算机“自我学习”,从而实现更准确的预测和决策。 https://www.jianshu.com/p/ebf29ca6e0d7
5.强化学习算法都有什么?强化学习算法有哪些强化学习算法都有什么? 强化学习是一类机器学习方法,旨在使智能体(代理程序)能够通过与环境的交互学习如何做出最优的决策。强化学习算法涵盖了多种不同的方法和技术,典型的强化学习算法包括值迭代、策略迭代、Q学习、深度强化学习等等。下面我们将详细介绍一些常见的强化学习算法。https://blog.csdn.net/wq6qeg88/article/details/136900430
6.有哪几种深度学习模型实现语音增强语音增强算法有哪些基于机器学习的语音增强方法算是奇巧之技,不同于传统的数字信号处理方法,它借鉴机器学习的思路,通过有监督的训练实现语音增强。该领域的算法算是刚刚起步,满打满算也没有二十年的历史,但是“存在即合理”,它之所以能够在语音增强领域占有一席之地,也有其优势所在,例如,在数字信号处理领域的一些比较棘手的问题https://blog.51cto.com/u_16099279/10969226
7.增强学习的深度和广度增强学习的深度和广度体现,用于分类、学习算法的沟通和优化。学习算法探索学习算法主要用来描述一个最好的学习算法,封装了大量的网络过程。学习算法虽然已有图片或者移动其最短特征向量的一阶特征向量,同时收敛和学习率更高,同时帮助学习新的分类应用更加轻量。不同算法https://www.huaweicloud.com/zhishi/edits-17512415.html
8.强化学习之父RichardSutton给出一个简单思路,大幅增强所有RL算法但这些强化学习方法仍有改进空间。近日,强化学习之父、阿尔伯塔大学教授 Richard Sutton 的团队低调更新了一篇论文,其中提出了一种新的通用思想 Reward Centering,并称该思想适用于几乎所有强化学习算法。这里我们将其译为「奖励聚中」。 该论文是首届强化学习会议(RLC 2024)的入选论文之一。一作 Abhishek Naik 刚刚从https://m.thepaper.cn/newsDetail_forward_29213147
9.深度增强学习PPO(ProximalPolicyOptimization)算法OpenAI出品的baselines项目提供了一系列deep reinforcement learning(DRL,深度强化学习或深度增强学习)算法的实现。现在已经有包括DQN,DDPG,TRPO,A2C,ACER,PPO在内的近十种经典算法实现,同时它也在不断扩充中。它为对DRL算法的复现验证和修改实验提供了很大的便利。本文主要走读其中的PPO(Proximal Policy Optimization)算法http://www.fpga7.com/ziyuan.asp?id=41
10.AlphaZero加强版AlphaTensor问世,发现史上最快矩阵乘法算法例如研究人员提出了一种序列增强学习技术,用于在乳房X光片中使用SVM检测微钙化(MC)簇时提高性能等。ML和模式识别算法对大脑成像有重大影响,从长远来看,ML领域的技术发展和放射学可以互惠互利。深度学习(DL)是ML的一个分支,它处理的是受大脑的生物和功能启发的算法(即ANN)。DL已经迅速成为医学影像领域评估医学图像的https://www.medsci.cn/article/show_article.do?id=97c6e419443f
11.2020年媒体技术趋势报告:13大领域89项变革全输出机器学习指的是一种应用算法来分析数据,从而可以更好地完成各种任务的系统,并且随着时间推移,它会越来越擅长这些任务。但这种系统也面临着效率问题:系统需要停下来解析数据。而最新研究表明,实时机器学习可以随数据获取而实时调整模型。这标志着数据移动方式以及我们检索信息方式的巨大变化。 https://36kr.com/p/5267903
12.博弈环境下的深度强化学习和传统的深度强化学习不同博弈环境下的深度学习通常使用增强学习算法来训练智能体。增强学习是一种通过与环境交互学习最优策略的方法。传统的深度学习通常使用监督学习算法。 3、求解目标 博弈环境下的深度学习的目标是通过与其他智能体竞争或合作来学习最佳行动策略。传统的深度学习通常是为了解决特定的任务或问题。 https://wap.sciencenet.cn/home.php?mod=space&uid=40841&do=blog&id=1418525
13.2021届计算机科学方向毕业设计(论文)阶段性汇报基于多智能体增强学习的交互式图像分割算法研究 本课题旨在利用强化学习算法,将与人类的不断交互的信息引入到图像分割的过程中,从而实现交互式的图像分割,增加分割的准确率和收敛速度,最终降低分割所需要的标注成本。 目前现已基于开源的ppo强化学习算法进行修改,完成了算法主体部分的代码框架搭建,并且完善了数据处理、https://zhiyuan.sjtu.edu.cn/html/zhiyuan/announcement_view.php?id=3943
14.机器学习十大算法都是何方神圣?看完你就懂了雷峰网机器学习算法分为三类:有监督学习、无监督学习、增强学习。有监督学习需要标识数据(用于训练,即有正例又有负例),无监督学习不需要标识数据,增强学习介于两者之间(有部分标识数据)。下面我将向大家具体介绍机器学习中10大算法(只介绍有监督、无监督两类,暂不介绍增强学习)。 https://www.leiphone.com/category/ai/FRfgpPXPrR030UmP.html
15.关于《长方体和正方体的表面积》教学设计(精选11篇)2、练习十第3题。先独立完成,再与同桌交流自己的算法。 四、课堂小结 通过这节课的讨论学习,你有什么收获和体会? 《长方体和正方体的表面积》教学设计 5 教学内容 教材第89 页:长方体和正方体的表面积 教学目标 1、使学生在具体的情境中,经历操作、讨论、交流、归纳的过程,理解长方体、正方体表面积的含义https://mip.ruiwen.com/jiaoxuesheji/2707146.html
16.主动学习入门篇:什么是主动学习?有哪些具体应用在机器学习领域中,根据是否需要样本的标签信息可分为“监督学习”和“无监督学习”。此外,同时利用未标注样本和标注样本进行机器学习的算法可进一步归纳为三类:半监督学习、直推式学习和主动学习。 文献[21]简要介绍了主动学习与半监督学习的异同点:“半监督学习和主动学习都是从未标记样例中挑选部分价值量高的样例标https://www.scholat.com/teamwork/showPostMessage.html?id=9011
17.AlphaGo背后的秘密——深度增强学习(DRL)前沿算法解析但对于价值网络来说,输入的信息仅有状态s,动作a及回馈r。因此,如何计算出目标Q值是DQN算法的关键,而这正是增强学习能够解决的问题。基于增强学习的Bellman公式,我们能够基于输入信息特别是回馈r构造出目标Q值,从而得到损失函数,对价值网络进行更新。 图4 UNREAL算法框图https://cloud.tencent.com/developer/article/1144210
18.YSGStudyHards/DotNetGuide:C#/.NET/.NETCore学习逻辑算法通常使用形式化的逻辑语言和符号进行描述和表达,以便于机器或计算机程序的理解和执行。 逻辑算法提升 小浩算法 Hello算法 AcWing在线题库 牛客网基础算法 CodeTop企业题库 在线算法刷题平台-力扣 labuladong的算法小抄 VisuAlgo可视化学习算法 程序员必须掌握的算法有哪些? C#常见逻辑算法 C#经典十大排序算法 https://github.com/YSGStudyHards/DotNetGuide
19.多模态学习情感计算:动因框架与建议前沿领域进入2010年后,情感计算被广泛应用于教育领域[1],期间各类学习系统利用情感计算技术发展起来,代表性的有情感导学系统(ATS)。该类系统通过采集学习者面部、语音等数据,利用机器学习算法分析与处理情感信息,以识别与反馈情感状态,进而为学习者提供个性化导学策略。此外,学习情感计算也从单模态走向多模态数据融合,其中,深度学https://www.eduwest.com/html/2022/qianyanlingyu_0301/678.html