基于深度学习算法的智能态势理解方法人工智能

文给出了一种基于深度学习算法的态势理解方法,分析了该智能算法在态势理解中的应用方本式;提出了基于知识发现方法的态势理解技术路径;介绍了基于大数据、智能算法的态势理解知识发现的流程。最后,以战术层级作战意图识别问题为例,对比分析了传统作战意图识别方法和基于深度学习算法的作战意图识别方法;以合成部队坦克分队战术意图识别问题为例,探讨了深度学习长短时记忆(LSTM)网络算法在态势理解作战意图识别中的应用,试验结果证明,深度学习LSTM网络算法对作战意图识别问题具有较高的识别准确率和较好的收敛函数值,能有效提高复杂战场环境下作战指挥态势理解效率。

应用方法

图1智能算法在态势理解中应用

1.1知识发现方法池

基于智能算法的态势理解方法主要通过构建知识发现方法池实现,包括关联规则发现方法、粗糙集方法、深度学习算法以及数据库方法。根据情境分析任务的不同需要和数据的特点,选择适当方法或综合采用不同方法。还可根据实际问题对现有的知识发现方法进行改进,使改进后的方法更有利于应对新环境和新问题。利用知识发现技术,挖掘隐含的、有用的、未被发现的信息和知识(如规则、模型和约束等),并提供给决策者。基于知识发现方法池的智能态势理解流程如图2所示。

图2基于知识发现方法池的智能态势理解流程

知识发现方法池主要技术方法对比如表1所示。不同的知识发现方法具有不同指标特征,导致不同知识发现方法的应用领域也不同。知识发现的输出是规则、模式、模型和约束等知识元素。规则可划分为关联规则、分类规则以及聚类规则;模式可分为频繁模式、子图模式和序列模式。同样,这些知识发现结果也有不同的特点和用途。

表1知识发现方法池主要技术方法对比

1.2知识发现流程

图3态势理解知识发现流程

2)态势数据处理。首先,通过对态势数据的整理、整合、变换和归约等方式对态势数据进行预处理,处理内容包括噪声数据去除、数据不完整性以及数据不一致性处理等;其次,对数据采取平滑和聚集等规范化处理,这是数据压缩和转换的必要步骤。

3)态势数据挖掘。数据挖掘是从战场态势信息数据中,通过智能算法搜索隐含的高价值信息的过程,是态势理解知识发现的重要环节。通过对数据分类、聚类、预测和关联的分析和研究,将原始数据从基础信息抽象为符合用户需求的高级知识,实现从大量、不完全和模糊的数据中发现战场态势知识。

5)态势知识呈现。通过研究、提取和可视化最有价值的战场态势知识,把态势理解知识以知识图谱、虚拟现实和增强现实等易于用户理解的方式传递给用户。其中,知识图谱是一种基于图的真实世界语义描述模型,它为态势理解知识的呈现提供了一种新技术。

应用实例

2.1基于模板匹配的作战意图识别

Gw.Hopple等的战场情报信息准备系统和David.F.Noble的基于规划模板的海战意图识别系统都通过模板匹配来实现敌方作战意图识别。

图4模板匹配器结构

2.2基于深度学习算法的作战意图识别

与传统方法相比,基于深度学习算法的作战意图识别方法在战场态势理解

图5基于深度学习算法的作战意图识别模型

2.3基于深度学习算法的作战意图识别仿真试验

试验以合成部队坦克分队与敌遭遇战斗为背景,以作战筹划过程中态势理解阶段对敌方坦克分队战术行动意图识别为研究对象。在智能作战试验平台上运用深度学习算法,采用作战仿真训练数据进行作战意图识别试验。智能作战试验平台是集成了人工智能算法的综合试验平台。

2.3.1模型设计与实现

图6基于深度学习算法作战意图识别模型应用

表2长短时记忆网络算法参数

2.3.2试验结果

在试验过程中,将坦克分队7种战术行动意图共2000个样本数据随机分为80%训练集和20%测试集。图7显示了LSTM网络算法模型在上述7种战术行动意图数据集上的综合训练与测试结果。如图7所示,对敌7种战术行动意图识别准确率随着训练次数的增加而增加,在训练1200步以后趋于稳定接近于100%;随着训练次数的增加,损失函数的值逐渐减小,1200步后趋于0。该结果符合一般深度学习算法模型的训练过程。可以看出,LSTM网络算法对于敌方坦克分队战术行动意图识别问题具有良好的识别准确率和收敛性。

THE END
1.强化学习的主流算法:从基础到实践强化学习的主要应用场景包括机器人控制、游戏AI、自动驾驶、推荐系统等。随着数据量的增加和计算能力的提升,强化学习在近年来取得了显著的进展。本文将从基础到实践的角度介绍强化学习的主流算法,包括值函数方法(Value-based methods)、策略梯度方法(Policy-gradient methods)和模型基于方法(Model-based methods)。 https://blog.csdn.net/universsky2015/article/details/137307363
2.人工智能大模型原理与应用实战:强化学习理论51CTO博客在本节中,我们将详细介绍强化学习中的一些核心算法,包括值迭代(Value Iteration)、策略迭代(Policy Iteration)、Q-学习(Q-Learning)等。同时,我们还将讲解这些算法的原理、具体操作步骤以及数学模型公式。 3.1 值迭代 值迭代是一种基于动态规划的强化学习算法,它通过迭代地更新值函数来找到最优策略。值迭代的主要思想https://blog.51cto.com/universsky/8997575
3.强化学习详解:理论基础与核心算法解析动态规划是一种通过递推方式求解优化问题的算法。在强化学习中,动态规划用于计算最优策略和价值函数。动态规划的前提是模型已知,即环境的状态转移概率和奖励函数是已知的。 3.1.1 价值迭代(Value Iteration) 价值迭代是一种通过不断更新价值函数来逼近最优价值函数的方法。其核心思想是利用贝尔曼最优方程递归地更新状态https://www.jianshu.com/p/09c44358b4a6
4.科学网—[转载]进化集成学习算法综述【摘 要】进化集成学习结合了集成学习和进化算法两方面的优势,并在机器学习、数据挖掘和模式识别等领域被广泛应用。首先对进化集成学习算法的理论基础、组成结构及分类情况进行了概述。然后根据进化算法在集成学习中的优化任务,从样本选择、特征选择、集成模型参数组合优化、集成模型结构优化以及集成模型融合策略优化几个方面https://wap.sciencenet.cn/blog-951291-1312816.html
5.2021届计算机科学方向毕业设计(论文)阶段性汇报在代码方面,目前已经搭建了基于SemGCN的基本模型框架,并且在小规模的数据集上验证了模型的正确性。未来将在此基础上进一步探究GCN层的不同实现方式和效果,并在大数据集上进行验证实验。 杨雨欢 基于多智能体增强学习的交互式图像分割算法研究 主要实验是在自然数据集Pascal VOC上扩展pixelRL算法,并进行多分类任务https://zhiyuan.sjtu.edu.cn/html/zhiyuan/announcement_view.php?id=3943
6.第三代神经网络模型:面向AI应用的脉冲神经网络澎湃号·湃客由于计算复杂性的原因,大多数的脉冲神经元模型都不适用于类似人工神经网络的大规模模拟。Wolfgang Maass 在提出SNN时使用的是相对简单的整合发放模型,而带泄漏整合发放(leaky integrate-and-fire,LIF)模型[1]则是目前在面向AI的SNN研究中最为常用的脉冲神经元。一些面向SNN学习算法的工作将LIF神经元与循环神经元进行类https://www.thepaper.cn/newsDetail_forward_27289221
7.深度学习中有哪些数据增强方法?至少从19年 NLP方向 google出品的半监督学习算法 UDA 可以看出[6],文本数据增强技术可以用在无标签样本上,以构造出半监督训练所需的样本对,以此让模型从无标签的数据中获取到优化所需的梯度。关于半监督学习的具体进展,后面如果有时间,可以单开一篇文章介绍。 (4) 提高模型的鲁棒性 数据增强技术在不严谨的情况下https://www.zhihu.com/question/319291048
8.基于深度强化学习的水面无人艇路径跟踪方法一方面,本发明的策略模型基于柔性演员评论家算法构建,并通过马尔可夫决策过程训练和参数更新,使得能够将深度强化学习算法应用到无人艇运动控制,而这种基于深度强化学习的控制方法不用对无人艇的动力学和环境干扰进行人工显式建模,并且通过参考航向角、实时位姿信息和环境干扰信息等生成的状态值,能够在与环境的交互过程中https://www.xjishu.com/zhuanli/54/202210772926.html/
9.详解5大常用的特征选择方法!腾讯云开发者社区2.4 基于学习模型的特征排序 英文:Model based ranking 这种方法的思路是直接使用你要用的机器学习算法,针对每个单独的特征和响应变量建立预测模型。其实Pearson相关系数等价于线性回归里的标准化回归系数。假如某个特征和响应变量之间的关系是非线性的,可以用基于树的方法(决策树、随机森林)、或者扩展的线性模型等。基于https://cloud.tencent.com/developer/article/1975833
10.基于多任务学习的肝细胞癌分割与病理分化程度预测方法最后,期望本文提出的多任务学习方法能够在HCC分割和病理分化程度预测两个任务上同时获得良好的性能,从而为HCC患者的临床诊断和治疗提供参考借鉴。 1 多任务学习算法 本文提出的多任务学习模型如图1所示,包含分割子网和分类子网。分割子网是一个具有边界感知注意力的U-net变体结构;分类子网的基干网络和分割子网的编码器https://www.cjebm.com/article/10.7507/1001-5515.202208045
11.台风科学研究为防灾减灾强支撑首先设定了13个表征台风尺度的参数,使用5种算法对给出的8种输入方案进行算法模型训练、验证和测试,通过对各算法模型估算性能的评估,确定各参数的最佳估算模型和最优输入方案,之后进行模型优化再训练,最终确定算法模型最优参数。 基于模型构建了1981—2020年西北太平洋的台风尺度精细结构数据集,使用飞机探测报、JTWC最佳路https://www.cma.gov.cn/2011xwzx/2011xqxxw/2011xqxyw/202305/t20230531_5541701.html