什么是强化学习?强化学习有哪些框架算法应用?

丰富的线上&线下活动,深入探索云世界

做任务,得社区积分和周边

最真实的开发者用云体验

让每位学生受益于普惠算力

让创作激发创新

资深技术专家手把手带教

遇见技术追梦人

技术交流,直击现场

海量开发者使用工具、手册,免费下载

极速、全面、稳定、安全的开源镜像

开发手册、白皮书、案例集等实战精华

为开发者定制的Chrome浏览器插件

与其他的机器学习算法相比,强化学习最大的特点在于其能够处理连续的、实时的、具有不确定性的环境,因此在许多实际的应用场景中具有很高的实用价值。例如,在机器人控制、游戏策略、自然语言处理等领域中,强化学习已经取得了一系列的重要成果,成为了人工智能领域中不可或缺的一部分。

强化学习的基本框架包括以下几个要素:

在强化学习中,有许多不同的算法可以用来实现智能体的学习过程。其中,最常用的算法包括基于值函数的算法和基于策略的算法。下面简要介绍几种常见的强化学习算法。

Q-learning是一种基于值函数的强化学习算法,其核心思想是通过学习一个状态-行动值函数$Q(s,a)$来指导智能体的决策过程。具体地,Q-learning算法通过迭代的方式更新$Q$函数的估计值,以期最大化长期的总奖励。

Q-learning算法的更新公式如下所示:

$$Q(s,a)\leftarrowQ(s,a)+\alpha[r+\gamma\max_{a'}Q(s',a')-Q(s,a)]$$

其中,$\alpha$是学习率,$r$是当前状态下采取行动$a$所获得的即时奖励,$\gamma$是折扣因子,$s'$是下一个状态,$a'$是在下一个状态下智能体采取的最优行动。

Sarsa是另一种基于值函数的强化学习算法,其核心思想是通过学习一个状态-行动值函数$Q(s,a)$来指导智能体的决策过程。与Q-learning不同的是,Sarsa算法采用了一种基于策略的学习方式,即在每个状态下,智能体会根据当前策略$\pi$采取一个行动$a$,然后观察到下一个状态和获得的奖励,并根据观察到的信息更新自己的策略。

Sarsa算法的更新公式如下所示:

$$Q(s,a)\leftarrowQ(s,a)+\alpha[r+\gammaQ(s',a')-Q(s,a)]$$

其中,$\alpha$是学习率,$r$是当前状态下采取行动$a$所获得的即时奖励,$\gamma$是折扣因子,$s'$是下一个状态,$a'$是在下一个状态下智能体根据当前策略$\pi$采取的行动。

PolicyGradient算法的更新公式如下所示:

$$\theta\leftarrow\theta+\alpha\nabla_\thetaJ(\theta)$$

强化学习在许多领域中都有着广泛的应用。下面介绍几个典型的应用场景。

在游戏AI领域中,强化学习是一种非常有效的学习方式。例如,在AlphaGo和AlphaZero算法中,就采用了基于强化学习的方法来训练模型。这些算法能够在围棋、象棋、国际象棋等复杂的游戏中取得非常高的胜率,甚至超过了人类棋手的水平。

在机器人控制领域中,强化学习也是一种非常有效的学习方式。例如,在机器人足球比赛中,智能体需要学习如何在复杂的环境中进行决策,以期在比赛中取得最高的得分。强化学习可以帮助机器人足球队伍训练出更加智能、灵活的策略,从而在比赛中取得更好的成绩。

在自然语言处理领域中,强化学习也有着广泛的应用。例如,在机器翻译任务中,智能体需要学习如何在一个长句子中进行最优的翻译,以期在整个文档中获得最高的总体译文质量。强化学习可以帮助机器翻译模型训练出更加智能、准确的翻译策略,从而提高整个翻译系统的性能。

THE END
1.解析人工智能三大算法机器学习深度学习与强化学习的核心之旅解析人工智能三大算法:机器学习、深度学习与强化学习的核心之旅 人工智能三大算法是现代计算机科学领域中的重要组成部分,它们分别是机器学习、深度学习和强化学习。每种算法都有其独特的特点和应用场景,共同推动了人工智能技术的发展。 机器学习:数据驱动的革命 机器学https://www.fmovhaqkz.com/shou-ji/530948.html
2.人工智能三大算法机器学习深度学习与强化学习的融合与应用前景在当今信息技术高速发展的时代,人工智能(AI)已经成为全球科技界关注的焦点。其中,机器学习、深度学习和强化学习被认为是人工智能领域中最重要的三大算法,它们分别代表了不同的研究方向和解决问题的手段。本文旨在探讨这三个关键算法,以及它们如何相互融合,并对未来的人工智能发展产生何种影响。 https://www.2gadecbu9.cn/xing-ye-dong-tai/433419.html
3.机器学习算法的数据增强:提高学习效率的关键方法数据增强(Data Augmentation)是一种在训练机器学习模型时,通过对现有数据进行改变而产生新数据的方法。数据增强的目的是提高模型的泛化能力,提高学习效率,减少需要的标注数据量,从而降低成本。数据增强在图像识别、自然语言处理、语音识别等领域都有广泛的应用。 https://blog.csdn.net/universsky2015/article/details/135801267
4.增强学习与深度学习的比较:同点与不同尽管增强学习和深度学习在理论和方法上有很大差异,但它们在实际应用中存在一定的联系。例如,深度学习可以用于模拟环境模型,增强学习可以利用深度神经网络作为价值函数或策略评估器。 3.核心算法原理和具体操作步骤以及数学模型公式详细讲解 3.1增强学习算法 3.1.1Q-Learning https://blog.51cto.com/universsky/9048294
5.7个流行的强化学习算法及代码实现本文介绍了流行的强化学习算法的发展和改进。 强化学习在近些年得到了越来越多的关注。虽然现在关于强化学习的资料有很多,但是许多读者仍然觉得强化学习入门比较困难,许多时候有一种似懂非懂或者 “知其然而不知其所以然”的感觉。甚至一些读者认为强化学习是一个黑盒子,很多东西数学上是解释不清的,这其实是一种误解https://zhuanlan.zhihu.com/p/690515680
6.最值得关注的10大深度学习算法腾讯云开发者社区今天给大家分享一下10大经典的深度学习算法。 首先,对比一下传统机器学习和深度学习的训练过程差异: 下图展示了传统机器学习算法与深度学习技术在数据量方面的性能比较。从图表中可以明显看出,随着数据量的增加,深度学习算法的性能也随之提升。 相比之下,传统机器学习算法的性能虽然会在一定程度上提升,但之后会趋于稳定(https://cloud.tencent.com/developer/article/2437425
7.深度增强学习PPO(ProximalPolicyOptimization)算法OpenAI出品的baselines项目提供了一系列deep reinforcement learning(DRL,深度强化学习或深度增强学习)算法的实现。现在已经有包括DQN,DDPG,TRPO,A2C,ACER,PPO在内的近十种经典算法实现,同时它也在不断扩充中。它为对DRL算法的复现验证和修改实验提供了很大的便利。本文主要走读其中的PPO(Proximal Policy Optimization)算法http://www.fpga7.com/ziyuan.asp?id=41
8.AlphaZero加强版AlphaTensor问世,发现史上最快矩阵乘法算法例如研究人员提出了一种序列增强学习技术,用于在乳房X光片中使用SVM检测微钙化(MC)簇时提高性能等。ML和模式识别算法对大脑成像有重大影响,从长远来看,ML领域的技术发展和放射学可以互惠互利。深度学习(DL)是ML的一个分支,它处理的是受大脑的生物和功能启发的算法(即ANN)。DL已经迅速成为医学影像领域评估医学图像的https://www.medsci.cn/article/show_article.do?id=97c6e419443f
9.BAT机器学习面试1000题系列(二)面试笔试整理3:深度学习机器学习面试问题准备(必会) 105.当机器学习性能遭遇瓶颈时,你会如何优化的? 可以从这4个方面进行尝试:基于数据、借助算法、用算法调参、借助模型融合。当然能谈多细多深入就看你的经验心得了。 这里有一份参考清单:机器学习系列(20)_机器学习性能改善备忘单 https://www.jianshu.com/p/4a7f7127eef1
10.2020年媒体技术趋势报告:13大领域89项变革全输出机器学习指的是一种应用算法来分析数据,从而可以更好地完成各种任务的系统,并且随着时间推移,它会越来越擅长这些任务。但这种系统也面临着效率问题:系统需要停下来解析数据。而最新研究表明,实时机器学习可以随数据获取而实时调整模型。这标志着数据移动方式以及我们检索信息方式的巨大变化。 https://36kr.com/p/5267903
11.博弈环境下的深度强化学习和传统的深度强化学习不同博弈环境下的深度学习通常使用增强学习算法来训练智能体。增强学习是一种通过与环境交互学习最优策略的方法。传统的深度学习通常使用监督学习算法。 3、求解目标 博弈环境下的深度学习的目标是通过与其他智能体竞争或合作来学习最佳行动策略。传统的深度学习通常是为了解决特定的任务或问题。 https://wap.sciencenet.cn/home.php?mod=space&uid=40841&do=blog&id=1418525
12.成为算法工程师需要学习哪些课程?算法工程师要求很高的数学水平和逻辑思维。需要学习高数,线性代数,离散数学,数据结构和计算机等课程。专业要求:计算机、电子、通信、数学等相关专业;学历要求:本科及其以上的学历,大多数是硕士学历及其以上;语言要求:英语要求是熟练,基本上能阅读国外专业书刊;必须掌握计算机相关知识,熟练使用仿真工具https://zhidao.baidu.com/question/1994330805504728707.html
13.2021届计算机科学方向毕业设计(论文)阶段性汇报基于多智能体增强学习的交互式图像分割算法研究 本课题旨在利用强化学习算法,将与人类的不断交互的信息引入到图像分割的过程中,从而实现交互式的图像分割,增加分割的准确率和收敛速度,最终降低分割所需要的标注成本。 目前现已基于开源的ppo强化学习算法进行修改,完成了算法主体部分的代码框架搭建,并且完善了数据处理、https://zhiyuan.sjtu.edu.cn/html/zhiyuan/announcement_view.php?id=3943
14.主动学习入门篇:什么是主动学习?有哪些具体应用1、随机采样策略(Random Sampling,RS):RS 不需要跟模型的预测结果做任何交互,直接通过随机数从未标注样本池筛选出一批样本给专家标注,常作为主动学习算法中最基础的对比实验。 2、不确定性策略(Uncertainty Strategy,US):US 假设最靠近分类超平面的样本相对分类器具有较丰富的信息量,根据当前模型对样本的预测值筛选出最https://www.scholat.com/teamwork/showPostMessage.html?id=9011
15.多模态学习情感计算:动因框架与建议前沿领域进入2010年后,情感计算被广泛应用于教育领域[1],期间各类学习系统利用情感计算技术发展起来,代表性的有情感导学系统(ATS)。该类系统通过采集学习者面部、语音等数据,利用机器学习算法分析与处理情感信息,以识别与反馈情感状态,进而为学习者提供个性化导学策略。此外,学习情感计算也从单模态走向多模态数据融合,其中,深度学https://www.eduwest.com/html/2022/qianyanlingyu_0301/678.html
16.YSGStudyHards/DotNetGuide:C#/.NET/.NETCore学习逻辑算法通常使用形式化的逻辑语言和符号进行描述和表达,以便于机器或计算机程序的理解和执行。 逻辑算法提升 小浩算法 Hello算法 AcWing在线题库 牛客网基础算法 CodeTop企业题库 在线算法刷题平台-力扣 labuladong的算法小抄 VisuAlgo可视化学习算法 程序员必须掌握的算法有哪些? C#常见逻辑算法 C#经典十大排序算法 https://github.com/YSGStudyHards/DotNetGuide