基于基本图像处理技术的数据增强方法

数据增强(DataAugmentation)是一种通过让有限的数据产生更多的等价数据来人工扩展训练数据集的技术。它是克服训练数据不足的有效手段,目前在深度学习的各个领域中应用广泛。但是由于生成的数据与真实数据之间的差异,也不可避免地带来了噪声问题。

为什么需要数据增强

计算视觉数据增强

计算视觉领域的数据增强算法大致可以分为两类:第一类是基于基本图像处理技术的数据增强,第二个类别是基于深度学习的数据增强算法。

下面先介绍基于基本图像处理技术的数据增强方法:

几何变换(GeometricTransformations):由于训练集与测试集合中可能存在潜在的位置偏差,使得模型在测试集中很难达到训练集中的效果,几何变换可以有效地克服训练数据中存在的位置偏差,而且易于实现,许多图像处理库都包含这个功能。

颜色变换(ColorSpace):图片在输入计算机之前,通常会被编码为张量(高度×宽度×颜色通道),所以可以在色彩通道空间进行数据增强,比如将某种颜色通道关闭,或者改变亮度值。

旋转|反射变换(Rotation/Reflection):选择一个角度,左右旋转图像,可以改变图像内容朝向。关于旋转角度需要慎重考虑,角度太大或者太小都不合适,适宜的角度是1度到20度。

噪声注入(NoiseInjection):从高斯分布中采样出的随机值矩阵加入到图像的RGB像素中,通过向图像添加噪点可以帮助CNN学习更强大的功能。

内核过滤器(KernelFilters):内核滤镜是在图像处理中一种非常流行的技术,比如锐化和模糊。将特定功能的内核滤镜与图像进行卷积操作,就可以得到增强后的数据。直观上,数据增强生成的图像可能会使得模型面对这种类型的图像具有更高的鲁棒性。

缩放变换(Zoom):图像按照一定的比例进行放大和缩小并不改变图像中的内容,可以增加模型的泛化性能。

移动(Translation):向左,向右,向上或向下移动图像可以避免数据中的位置偏差,比如在人脸识别数据集合中,如果所有图像都居中,使用这种数据增强方法可以避免可能出现的位置偏差导致的错误。

翻转变换(Flipping):通常是关于水平或者竖直的轴进行图像翻转操作,这种扩充是最容易实现的扩充,并且已经证明对ImageNet数据集有效。

第二个类别是基于深度学习的数据增强算法:

特征空间增强(FeatureSpaceAugmentation):神经网络可以将图像这种高维向量映射为低维向量,之前讨论的所有图像数据增强方法都应用于输入空间中的图像。现在可以在特征空间进行数据增强操作,例如:SMOTE算法,它是一种流行的增强方法,通过将k个最近的邻居合并以形成新实例来缓解类不平衡问题。

对抗生成(AdversarialTraining):对抗攻击表明,图像表示的健壮性远不及预期的健壮性,Moosavi-Dezfooli等人充分证明了这一点。对抗生成可以改善学习的决策边界中的薄弱环节,提高模型的鲁棒性。

基于GAN的数据增强(GAN-basedDataAugmentation):使用GAN生成模型来生成更多的数据,可用作解决类别不平衡问题的过采样技术。

神经风格转换(NeuralStyleTransfer):通过神经网络风格迁移来生成不同风格的数据,防止模型过拟合。

自然语言处理数据增强

在自然语言处理领域,被验证为有效的数据增强算法相对要少很多,下面我们介绍几种常见方法。

随机插入(RandomlyInsert):随机选择一个单词,选择它的一个同义词,插入原句子中的随机位置,举一个例子:“我爱中国”—>“喜欢我爱中国”。

随机交换(RandomlySwap):随机选择一对单词,交换位置。

随机删除(RandomlyDelete):随机删除句子中的单词。

语法树结构替换:通过语法树结构,精准地替换单词。

情境增强(ContextualAugmentation):这种数据增强算法是用于文本分类任务的独立领域的数据扩充。通过用标签条件的双向语言模型预测的其他单词替换单词,可以增强监督数据集中的文本。

生成对抗网络:利用生成对抗网络的方法来生成和原数据同分布的数据,来制造更多的数据。在自然语言处理领域,有很多关于生成对抗网络的工作:

GeneratingTextviaAdversarialTraining

GANSforSequencesofDiscreteElementswiththeGumbel-softmaxDistribution

SeqGAN:SequenceGenerativeAdversarialNetswithPolicyGradient

回译技术(BackTranslation):回译技术是NLP在机器翻译中经常使用的一个数据增强的方法。其本质就是快速产生一些翻译结果达到增加数据的目的。回译的方法可以增加文本数据的多样性,相比替换词来说,有时可以改变句法结构等,并保留语义信息。但是,回译的方法产生的数据严重依赖于翻译的质量。

扩句-缩句-句法:先将句子压缩,得到句子的缩写,然后再扩写,通过这种方法生成的句子和原句子具有相似的结构,但是可能会带来语义信息的损失。

总结

数据增强是增大数据规模,减轻模型过拟合的有效方法,但是,数据增强不能保证总是有利的。在数据非常有限的域中,这可能导致进一步过度拟合。因此,重要的是要考虑搜索算法来推导增强数据的最佳子集,以便训练深度学习模型。

虽然相比于计算视觉,自然语言处理领域中的数据增强应用更少,难度也要更大,但是同时也意味着更大的机遇。

THE END
1.图像增强新思路:DeepLPF前言该文是华为诺亚方舟实验室 & INSA Lyon & Mila Montreal联合提出一种基于深度学习的图像增强方法。作者提出采用深度学习方法学习三种类型(椭圆滤波器、渐变滤波器、多项式滤波器)的空间局部滤波器用于图像增强。该文为深度学习算法在图像复原里面的应用提供了一个新思路,非常建议大家仔细看一下。文末附论文下载方式。https://zhuanlan.zhihu.com/p/611492439?utm_id=0
2.基于深度学习的图像增强的算法图像增强算法综述HE按处理方式可以分为基于全局直方图均衡化算法和基于局部直方图均衡化算法。前者是对低照度图像进行整体灰度级调整,若待处理的图像整体偏暗,则会使增强后的图像视觉效果极差,同时造成图像中的目标信息不能突显出来,对于那些全局灰度范围较宽的图像,增强后其细节不能很好地保留。后者的思想是将输入图像分割成各个子块,https://blog.51cto.com/u_14125/7924918
3.基于深度学习的低光照图像增强方法总结(2020.09.15更新)之前在做光照对于高层视觉任务的影响的相关工作,看了不少基于深度学习的低光照增强(low-light enhancement)的文章,于是决定简单梳理一下。 光照估计(illumination estimation)和低光照增强(low-light enhancement)的区别:光照估计是一个专门的底层视觉任务(例如[1,2,6]),它的输出结果可以被用到其它任务中,例如图像增https://blog.csdn.net/hyk_1996/article/details/99641652
4.基于深度学习的暗光图像增强与目标检测算法研究及应用基于深度学习的智能无人系统以其高智能、小型化、低成本等优势被广泛应用于各类暗光场景。而高级的计算机视觉任务,如目标检测,通常以内容清晰的高质量图像作为研究对象,对环境复杂、光线微弱的暗光场景无法实现高精度的检测。为此,本文提出了一种融合注意力机制的暗光增强算法以及适用于移动设备的快速目标检测算法,并通过https://wap.cnki.net/touch/web/Dissertation/Article/1023444780.nh.html
5.图像处理三:图像增强算法FPGA开发圈由于受到环境,光线等的影响,拍摄的照片清晰度和对比度比较低,不能够突出图像中的重点。图像增强就是通过一定手段来增强图像的对比度,使得其中的人物或者事物更加明显,有利于后边的识别等处理。本章介绍几个传统的图像增强算法,并给出matlab实现代码,看一看不同算法的实现效果,最后再介绍一下深度学习在图像增强上的应用http://xilinx.eetrend.com/content/2019/100044332.html
6.基于深度学习的图像边缘和轮廓提取整体嵌套边缘检测(Holistically-Nested Edge Detection,HED 是一个深度学习的边缘提取的算法,两个特色:(1)整体图像训练和预测; (2)多尺度、多层特征学习。该深度模型利用全卷积网络,自动学习丰富的分层表示(基于侧面响应的深层监督指导)。 多尺度深度学习可分为四类,即https://mp.weixin.qq.com/s?__biz=MzU0NjgzMDIxMQ==&mid=2247628143&idx=1&sn=f36201e4473903adbb7c63e24642841b&chksm=fac4d7b04943a3bc2a67e6307dac61560c15a5e0662e4b3f0d719307989355d740d966e9d821&scene=27
7.的图像去雾算法来啦!前面给大家介绍过14种低照度图像增强算法这个透射率告诉了图像去雾系统我们需要恢复多少被雾霾遮盖的细节。然后,系统会根据透射率对图片进行调整。它会让照片中的像素更加亮丽,同时减少雾霾造成的影响。具体来说,图像去雾算法可以分为基于图像增强的去雾算法、基于图像复原的去雾算法和基于深度学习的去雾算法。本文主要研究介绍基于深度学习的去雾算法介绍基于https://juejin.cn/post/7255312213480194107
8.图像增强算法综述①小波变换图像增强,偏微分方程图像增强,分数阶 微分的图像增强,基于 Retinex 理论的图像增强和基于深度学习的图像增强算法,?并讨论了它们的改进算法.?然后, 从视觉效果,对比度,信息熵等方面对几种算法进行了定性和定量的对比,?分析了它们的优势和劣势.?最后,?对图 像增强算法的未来发展趋势作了简单的https://c-s-a.org.cn/csa/article/pdf/7956
9.基于深度学习的图像压缩感知算法研究.pdf基于深度学习的图像压缩感知算法研究 3.5本章小结23 第四章基于观测值残差并行网络的深度压缩感知算法25 4.1引言25 4.2残差并行增强网络模型25 4.2.1网络模型25 4.2.2主特征提取分支25 4.2.3基于观测值残差的特征补偿提取分支27 4.2.4穿插模块28 4.2.5增强分支28 4.3损失函数29 4.4实验结果和分析29 4.4.1数据集https://max.book118.com/html/2024/0325/8130111014006051.shtm
10.图像增强算法综述15. 张莹. 暗光图像增强技术在矿用小型终端中的应用. 世界有色金属. 2024(14): 202-204 . 16. 章赵威,冯向萍,张世豪. 基于深度学习的玉米叶片病害识别方法研究. 现代计算机. 2024(13): 1-8+77 . 17. 王孟奇,连增增,田亚林,王鹏辉. 面向室内弱光环境的视觉与惯导融合算法研究. 导航定位与授时. 202http://www.chineseoptics.net.cn/en/article/id/9522
11.基于深度学习的水下图像增强技术研究学位然而,特殊的水下成像环境会导致拍摄的水下图像出现颜色失真、对比度低、细节模糊等退化现象,因此,水下图像增强技术具有重要的科学意义与应用价值。针对水下特殊成像环境与现有水下图像增强方法的不足之处,本文设计了基于深度学习的水下图像增强算法,主要研究工作包括: (1)为解决水下图像样本数量及多样性不足的问题,https://d.wanfangdata.com.cn/thesis/D02724334
12.低光照图像增强算法综述.docx传统的低光照图像增强算法在一定程度上提高了图像的视觉效果,但仍然存在一些问题,如噪声增强、细节丢失等。因此,近年来,随着深度学习技术的发展,越来越多的研究者开始关注基于深度学习的低光照图像增强算法。四、基于深度学习的低光照图像增强算法近年来,深度学习在计算机视觉任务中取得了显著的成果,尤其是在图像增强和https://www.renrendoc.com/paper/319219630.html
13.多尺度语义特征水下图像增强研究目前,水下图像增强与复原分为非深度学习方法与深度学习方法[2]。基于非深度学习方法主要分为2种:一种是图像增强,以像素点的基础使图像清晰,比如:直方图均衡化[3]、白平衡[4]、MSRCR[5]等算法,该类算法忽略传感器镜头在水下环境中的成像模型,导致红通道缺失,甚至出现伪影,用增强算法处理后的水下图像色彩容易增强https://www.fx361.com/page/2022/1214/17780778.shtml
14.Light深度学习赋能下的光学计量澎湃号·湃客澎湃新闻图2 光学计量的典型图像处理过程(如条纹投影轮廓术)可分为三个主要步骤:预处理(如去噪、图像增强)、分析(如相位解调、相位展开)和后处理(如相位—深度映射) 图3 光学计量图像处理层次结构的概貌以及不同层中分布的各种图像处理算法 深度学习技术 原理、发展与卷积神经网络 https://www.thepaper.cn/newsDetail_forward_16995760
15.科学网—基于深度学习的单幅图像超分辨率重建算法综述在深度学习未兴起前,经典的单幅图像超分辨率算法占据主导地位, Lanczos重采样[1]和双三次插值[2]得到了广泛的应用,但采用插值方法有时会导致图像边缘和细节模糊,因此其他传统算法也被相继提出[3-5],有效地增强了图像的质量.经典的超分辨率重建算法需要很多先验知识,且要求研究者具有深厚的专业知识储备.随着深度学习https://blog.sciencenet.cn/blog-3291369-1347645.html
16.增强型DeepLab算法和自适应损失函数的高分辨率遥感影像分类夏梦等(2017)结合深度学习和条件随机场,在输入图像中增加了纹理信息,得到了比SVM分类器更好的提取效果,但其网络结果中,输出层地物位置信息没有得到足够的保留。在DeepLab v2网络的基础上,Chen等(2018a)提出了Na?ve-SCNN和Deeper-SCNN网络,并提出增强视场的方法,使用ISPRS的高分辨率语义分割数据集,成功提高了训练https://www.ygxb.ac.cn/zh/article/doi/10.11834/jrs.20209200/