多尺度注意力机制的水下图像增强算法UnderwaterImageEnhancementBasedonMulti

多尺度注意力机制的水下图像增强算法

王士川,杜玲

天津工业大学计算机科学与技术学院,天津

收稿日期:2021年8月12日;录用日期:2021年10月7日;发布日期:2021年10月14日

摘要

关键词

水下图像增强,生成对抗网络,深度学习

UnderwaterImageEnhancementBasedonMulti-ScaleAttentionMechanism

ShichuanWang,LingDu

SchoolofComputerScienceandTechnology,TiangongUniversity,Tianjin

Received:Aug.12th,2021;accepted:Oct.7th,2021;published:Oct.14th,2021

ABSTRACT

Duetotheattenuationdifferenceofdifferentwavelengthsoflightinthewaterenvironment,theoriginalunderwaterimagesshowgreenish,bluishandwhitehazeproblems.Forunderwaterimageenhancement,thispaperproposesagenerativeadversarialnetworkbycombiningmulti-scaledenseblocksandattentionmechanism.Theresidualmultiscaledenseblockisusedinthegenerator,andtheattentionmechanismblockisusedintheback-endtofocusonthefront-endfeatures,whichcanimprovethelearningabilityandenhancethenetwork’sabilitytoselectfeatures,respectively.Eachlayerofthediscriminatorusesspectralnormalizationandrelaxesthediscriminantcriteriatoreducethegradientcollapsecausedbyanomalousdata.Atthesametime,multiplelossfunctionsarecombinedtoenhancethegeneralizationabilityofGANnetworks.Theproposedalgorithmistestedonpublicdatasetsandvalidatedinpracticalapplications.Experimentalresultsshowbetterperformancethanexistingalgorithms.

Keywords:UnderwaterImageEnhancement,GenerativeAdversarialNetwork,DeepLearning

ThisworkislicensedundertheCreativeCommonsAttributionInternationalLicense(CCBY4.0).

1.引言

深度学习在视觉任务中的成功,如目标检测和图像分割,激发了越来越多的深度模型在图像恢复中的应用[2]。然而,对于水下任务来说,数据集是一个难以解决的问题。现有的水下数据集相对稀少,而且参考图像的质量很难与自然图像相比。生成对抗网络(GAN)比其他基于深度学习的模型显示出更好的视觉效果。它将图像恢复问题转化为图像生成问题,其独特的自主生成特性,缓解了高质量数据集的一些压力。目前,已经提出许多有效的方法用于水下图像增强任务。

然而,对于基于GAN的水下图像增强方法,仍然存在一些限制。首先,用于训练的水下图像数据集的多样性是不够的。根据[3]中测量的十个不同的水体的结果,淡水和咸水水体之间存在很大的差异。不同纬度的水体和不同强度的环境光导致同一水下目标的颜色有所不同。其次,生成的模型对特殊的数据特征没有给予足够的重视。根据经典的Jaffe-McGlamery水下成像模型[4],白色雾状模糊团往往出现在浅水区。随着水深的增加,不同波长的光的衰减是非线性的,色彩对比度逐渐降低。这导致了在一定深度下的显著内容损失,使得GAN模型很难将白雾从图像场景中区分出来,增强结果会出现对比度偏差并出现难以解决的模糊感。第三,由于现有的GAN模型采用动态平衡作为收敛的判断结果,因此结果不够稳定,传统的对抗性损失在训练的早期阶段很难收敛,这会对增强效果产生影响。

在本文中,我们提出了一个条件生成对抗网络(c-GAN),它结合了多尺度密集块和注意力机制,主要贡献如下:

1)提出了一个结合多尺度密集块和注意力机制块的生成器网络,直接从退化的图像中获得增强的结果,而不需要预先构建水下退化模型。

3)采用两个与人类感官高度一致的非参考评价指标对实验结果给出了主观和客观评价,证明了所提出的算法在水下图像增强中的优越性。

水下图像增强是一项艰巨的任务,主要由于水下复杂的光照环境会严重降低可见度并且导致色彩失真。近年来提出了许多水下图像恢复和增强的方法,现有的方法可归纳为以下两类。

2.1.基于传统的方法

传统方法主要使用基于物理散射模型的人工方法。Wei等[5]使用水下光的衰减先验模型来估计水下场景图像的深度信息,从而可以获得预测的背景光和透射图信息。Huang等[6]将图像恢复分为两部分:对比度恢复与颜色调整。首先在RGB颜色空间中使用动态参数均衡G和B通道,然后在CIE-Lab色彩空间中调整各个分量来恢复颜色。与[5]和[6]不同,Ancuti等[7]尝试以多尺度融合的方式统一强度校正和边缘锐化。基于先验的人工方法缺乏概括性,如果不满足该假设,则无法获得良好的性能。因此,在野外,它们通常表现较差,例如不良的伪影、颜色失真等。

2.2.基于深度学习的方法

深度学习技术所拥有的强大特征学习能力是有目共睹的,其主要通过学习大量数据特征拟合不同图像信息的映射关系。根据使用的不同网络框架,将其大致划分为基于CNN的方法和基于GAN的方法。

Li等人[8]对比了多种水下图像增强算法的主观结果,构建了一个真实世界水下图像数据集,并且提出了一种基于CNN的融合增强算法,通过对原始图像进行直方图均衡化、伽马矫正、自适应白平衡等操作得到多种增强图像,并训练学习不同权重从而得到最终的融合结果。Hou等人[9]提出了一种在图像的传输图像域使用残差学习的水下图像增强网络,将水下图像增强任务建模为同时学习传输图和场景残差,该方法可以将先验知识和数据信息整合在一起以研究水下图像的潜在分布。Islam等[10]提出了具有端到端可训练模型的一种统一方法Deep-SESR,将水下图像增强和单图像超分辨率结合起来,最高可以得到4倍分辨率的增强图像。该体系结构结合了密集残差子网和辅助注意力网络,以促进网络学习局部密集的信息特征。

在[11]中,Uplavikar等人提出了一种统一了十种水类型的GAN模型,该模型通过一个干扰网络对编码器的输出进行判别,迫使编码器对不同域的水下图像的输出分布更接近,从而消除不同类别对解码器的影响。Li等[12]从图像风格转换收到启发,改进了CycleGAN网络(WSCT),添加一项SSIM损失作为内容损失,联合CycleGAN的循环一致性损失和对抗损失,无需成对的数据集即可将水下图像的内容和结构接近空气中的图像。Fabbri等人[13]直接使用CycleGAN,通过对ImageNet的子集[14]生成成对图像以解决训练集的稀少问题,使用WGAN损失约束GAN网络,梯度损失和L1损失约束内容,训练UGAN恢复网络。

不同于上述方法,本文使用水下失真图像和对应参考图像训练模型,使用了多尺度密集块和通道-空间注意力机制块来提升质量,只需一个训练模型就可以在不同类型的水下图像中取得良好的效果。

3.多尺度注意力水下图像增强算法

Figure1.Overallframework

本文提出的方案使用对抗损失、L1损失与L2损失组合的像素级别的内容损失、SSIM损失和特征损失组合的结构损失共同限制整个网络来生成视觉上质量良好的图像。

3.1.网络结构

3.1.1.生成器网络

Figure2.Generatornetworkstructure

Figure3.Multi-scaledenseblockstructure

道数,前端特征和后端特征拥有相同的特征图尺寸。

Figure4.Channelattentionbranch(top)andspatialattentionbranch(bottom)structure

3.1.2.判别器网络

所提出的判别器网络结构受到马尔可夫判别器(PatchGAN)[20]的启发。网络完全由卷积层组成,可以对任意大小的图像进行判别。前两个卷积层的步长为1,其余卷积层的步长为2,每经过一次卷积,特征图数量增加一倍。所有的卷积核尺寸都设置为偶数,便于更好地提取边缘特征。每个卷积层都使用谱归一化[21]进行梯度约束,以限制判别器的Lipschitz常数。文献[22]显示,具有谱归一化的判别器比没有谱归一化的判别器具有更好的客观质量分数。卷积层后紧跟LeakyReLU激活层,用以稳定上层的输出。在上述网络设置下,GAN网络具有非常强的稳定性。

3.2.损失函数

GAN的生成器网络生成一个未失真的图像,用来欺骗判别器。判别器接收一组未知图像和原始失真图像串联的图像数据,并对这组图像进行判别。GAN的训练过程是交替优化生成网络和判别器网络。对抗网络的损失函数如公式(1)所示:

其中C、W、H为常数,分别代表图像的通道数,宽度和高度。

结构相似性(SSIM)[23]可以根据亮度、对比度和结构这三个属性对图像进行比较。其描述增强后的图像和参考图像在上述三个指标中的相似度,数值范围介于0到1。并且数值越大,与参考图像的相似度越高。该指标更接近于人类的直觉,可以得出与主观评价一致的结论。在损失函数中加入SSIM损失来增强结果,如公式(4)所示:

综上,通过线性连接上述公式(1)~(5),可以得到总损失函数如下:

4.实验结果与分析

本文使用公开的数据集进行实验,并在相同条件下与其他算法(包括基于深度学习的算法和传统算法)进行比较。然后,我们对测试图像进行了主观和客观的评估,最后用两种典型的应用算法验证我们方法的实用性。事实证明,该方法具有良好的增强效果。

4.1.数据集与训练细节

4.2.主观评价

所提出的算法与基于对比度约束的自适应直方图均衡(CLAHE)[24]、水下图像融合增强(FE)[7]、基于水下光衰减先验(ULAP)[5]、基于弱监督色彩转换(WSCT)[12]和基于生成式对抗网络的水下图像增强(UGAN)[13]进行比较。

Figure5.Comparisonofexperimentalresultsofdifferentunderwaterimageenhancementalgorithms

4.3.客观评价

将本文所提算法和其他算法使用不同指标进行比较。我们使用均方误差(MSE)、峰值信噪比(PSNR)、结构相似度(SSIM)、水下图像质量测量指标(UnderwaterImageQualityMeasure,UIQM)[25]和自然图像质量评价指标(NaturalImageQualityEvaluator,NIQE)[26]对各个算法的测试结果进行了定量比较。MSE指标描述了由增强算法获得的图像与参考图像在像素层面上的差异。该值越小,两幅图像的像素值就越接近。PSNR指标描述了生成的图像中保留了多少原始信息。数值越大,图像中保留的原始信息就越多。SSIM指标描述了两幅图像在亮度和对比度等主观指标方面的相似度。该值越大,说明图像与参考图像在高级特征方面的重叠程度越高。UIQM代表水下图像质量指标,它只需要一张图像,是一个非参考评价指标,更适合于开放的水下任务。UIQM的评价分为三部分,即图像颜色指标(UICM)、清晰度指标(UISM)和对比度指标(UIConM)。UIQM的计算方法如公式(7)所示:

Table1.Quantitativecomparisonofdifferentunderwaterimageenhancementalgorithms

5.总结

水下图像受特殊成像环境影响存在颜色失真、对比度低等问题,本文提出一种水下图像增强算法,该算法在GAN网络中加入多尺度密集块和注意力机制块。在生成器网络中使用残差多尺度密集块,提高了网络对特征的提取能力,并且加入两组空间–通道注意力机制块,增强了网络对复杂特征的筛选能力,提升了网络的收敛速度。同时将多种内容损失和结构损失相结合,在不同尺度空间对网络进行约束,提升了GAN网络的稳定性和对不同图像的泛用性。最后进行了多种对比试验,证明本文算法可以对失真水下图像进行较好的增强,提升图像的整体视觉效果。

THE END
1.图像增强技术:从传统方法到深度学习传统图像增强方法主要基于手工设计的特征提取和处理策略,缺乏模型的表示能力。深度学习图像增强方法则通过训练深度学习模型,自动学习图像特征和增强策略,具有更强的表示能力和泛化性。 3.核心算法原理和具体操作步骤以及数学模型公式详细讲解 3.1 直方图均衡化 https://blog.csdn.net/universsky2015/article/details/137300109
2.深度学习图像增强算法总结mob64ca12d36217的技术博客随着人工智能技术的迅猛发展,图像处理尤其是图像增强领域也取得了显著进展。图像增强的目的是改善图片的质量,使其更适合后续的分析或展示。深度学习的引入,使得图像增强技术愈加成熟,方法也愈加丰富。本文将总结几种基于深度学习的图像增强算法,并提供代码示例。 https://blog.51cto.com/u_16213312/12040112
3.基于深度学习的水下图像增强方法研究(2)针对特殊的水下环境所造成的水下图像偏色问题,提出一种基于深度卷积神经网络的水下偏色图像增强算法。该算法采用U-Net网络作为基础网络,构建了一种基于偏色图像的卷积神经网络,不断学习输入图像与输出图像的色彩偏差,并设定结构相似性度量作为损失函数,使增强后的水下图像与输入的水下图像在内容结构细节上保持https://wap.cnki.net/lunwen-1021640751.html
4.基于深度学习的低照度图像增强算法研究【摘要】:在低照度环境或者设备补光能力不足时,所采集的图像大部分是低照度图像,这些图像会出现亮度低、不清晰、对比度低等问题,这些缺点严重影响了图像在后续计算机视觉任务中的处理。因此,增强低照度图像对后续的目标识别、语义分割等任务有着重要意义。深度学习算法是通过建立类似人脑信息处理机制的网络模型,采取高效https://cdmd.cnki.com.cn/Article/CDMD-10703-1021819042.htm
5.图像增强算法综述15. 张莹. 暗光图像增强技术在矿用小型终端中的应用. 世界有色金属. 2024(14): 202-204 . 16. 章赵威,冯向萍,张世豪. 基于深度学习的玉米叶片病害识别方法研究. 现代计算机. 2024(13): 1-8+77 . 17. 王孟奇,连增增,田亚林,王鹏辉. 面向室内弱光环境的视觉与惯导融合算法研究. 导航定位与授时. 202http://www.chineseoptics.net.cn/en/article/id/9522
6.低照度增强算法(图像增强+目标检测+代码)SMID python3 basicsr/train.py --opt Options/RetinexFormer_SMID.yml # SDSD-indoor python3 basicsr/train.py --opt Options/RetinexFormer_SDSD_indoor.yml # SDSD-outdoorxunlian python3 basicsr/train.py --opt Options/RetinexFormer_SDSD_outdoor.yml 在增强低光图像时,许多深度学习算法基于Retinex理论https://developer.aliyun.com/article/1446322
7.低光照图像增强算法综述.docx传统的低光照图像增强算法在一定程度上提高了图像的视觉效果,但仍然存在一些问题,如噪声增强、细节丢失等。因此,近年来,随着深度学习技术的发展,越来越多的研究者开始关注基于深度学习的低光照图像增强算法。四、基于深度学习的低光照图像增强算法近年来,深度学习在计算机视觉任务中取得了显著的成果,尤其是在图像增强和https://www.renrendoc.com/paper/319219630.html
8.基于GAN和U图像质量和细节的恢复还有很大提升空间. 2 生成对抗网络原理 本文针对传统增强方法的不足和现有基于深度学习算法的特点, 提出使用生成对抗网络作为模型框架进行低光照图像增强的方法. 本节介绍生成对抗网络的基本原理, 及目前主流的PatchGAN思想. 2.1 生成器和判别器https://c-s-a.org.cn/html/2022/5/8431.html
9.的图像去雾算法来啦!前面给大家介绍过14种低照度图像增强算法这个透射率告诉了图像去雾系统我们需要恢复多少被雾霾遮盖的细节。然后,系统会根据透射率对图片进行调整。它会让照片中的像素更加亮丽,同时减少雾霾造成的影响。具体来说,图像去雾算法可以分为基于图像增强的去雾算法、基于图像复原的去雾算法和基于深度学习的去雾算法。本文主要研究介绍基于深度学习的去雾算法介绍基于https://juejin.cn/post/7255312213480194107
10.基于深度学习的图像超分辨率增强技术在计算机视觉和图像处理领域,图像超分辨率增强是一项重要的技术。它的目标是利用计算机算法将低分辨率图像转换为高分辨率图像,从而提高图像的清晰度和细节表现力。传统的图像放大方法往往会导致图像模糊和失真,而基于深度学习的图像超分辨率增强技术则能够更好地保留图像细节和纹理,得到更加真实和清晰的图像。 https://www.jianshu.com/p/a13ccf05ccaa
11.Light深度学习赋能下的光学计量澎湃号·湃客澎湃新闻图2 光学计量的典型图像处理过程(如条纹投影轮廓术)可分为三个主要步骤:预处理(如去噪、图像增强)、分析(如相位解调、相位展开)和后处理(如相位—深度映射) 图3 光学计量图像处理层次结构的概貌以及不同层中分布的各种图像处理算法 深度学习技术 原理、发展与卷积神经网络 https://www.thepaper.cn/newsDetail_forward_16995760
12.总结62种在深度学习中的数据增强方式业界新闻或使用深度学习模型在原始数据的潜在空间(latent space)中生成新数据点从而人为的扩充新的数据集 这里我们需要区分两个概念,即增强数据和合成数据 》合成数据 指在不使用真实世界图像的情况下人工生成数据 合成数据可由GAN或者现如今大火的AGI技术Diffusion Model生成 https://www.jindouyun.cn/document/industry/article/183115
13.深度学习领域的数据增强机器之心第二个类别是基于深度学习的数据增强算法: 特征空间增强(Feature Space Augmentation):神经网络可以将图像这种高维向量映射为低维向量,之前讨论的所有图像数据增强方法都应用于输入空间中的图像。现在可以在特征空间进行数据增强操作,例如:SMOTE算法,它是一种流行的增强方法,通过将k个最近的邻居合并以形成新实例来缓解类不https://www.jiqizhixin.com/articles/2019-12-04-10
14.增强型DeepLab算法和自适应损失函数的高分辨率遥感影像分类夏梦等(2017)结合深度学习和条件随机场,在输入图像中增加了纹理信息,得到了比SVM分类器更好的提取效果,但其网络结果中,输出层地物位置信息没有得到足够的保留。在DeepLab v2网络的基础上,Chen等(2018a)提出了Na?ve-SCNN和Deeper-SCNN网络,并提出增强视场的方法,使用ISPRS的高分辨率语义分割数据集,成功提高了训练https://www.ygxb.ac.cn/zh/article/doi/10.11834/jrs.20209200/
15.科学网—基于深度学习的单幅图像超分辨率重建算法综述在深度学习未兴起前,经典的单幅图像超分辨率算法占据主导地位, Lanczos重采样[1]和双三次插值[2]得到了广泛的应用,但采用插值方法有时会导致图像边缘和细节模糊,因此其他传统算法也被相继提出[3-5],有效地增强了图像的质量.经典的超分辨率重建算法需要很多先验知识,且要求研究者具有深厚的专业知识储备.随着深度学习的https://blog.sciencenet.cn/blog-3291369-1347645.html