基于视觉Transformer的多损失融合水下图像增强网络

智能科学与技术学报,2022,4(4):522-532doi:10.11959/j.issn.2096-6652.202252

专题:水下机器人

丛晓峰1,桂杰1,章军21东南大学网络空间安全学院,江苏南京210000

2安徽大学人工智能学院,安徽合肥230000

CONGXiaofeng1,GUIJie1,ZHANGJun21SchoolofCyberScienceandEngineering,SoutheastUniversity,Nanjing210000,China

2SchoolofArtificialIntelligence,AnhuiUniversity,Hefei230000,China

修回日期:2022-10-25网络出版日期:2022-12-15

Revised:2022-10-25Online:2022-12-15

作者简介Aboutauthors

丛晓峰(1997-),男,东南大学网络空间安全学院博士生,主要研究方向为水下图像处理、生成式算法、图像去雾等。

桂杰(1982-)男,博士,东南大学网络空间安全学院教授、博士生导师,主要研究方向为生成式算法、图像去雾、对抗机器学习以及自监督学习等。

章军(1971-)男,博士,安徽大学人工智能学院教授、博士生导师,主要研究方向为模式识别、智能信息处理等。

由于水中存在光的吸收和散射现象,水下机器人拍摄到的图像存在颜色失真和对比度降低的问题。针对水下图像存在的质量退化现象,提出了一种基于视觉Transformer的多损失融合的方式训练水下图像增强网络。图像增强网络采用编码与解码的结构,可以采用端到端的方式进行训练。将多损失的线性组合作为总体优化目标,有效地更新水下图像增强网络的参数,包括像素损失、结构损失、边缘损失和特征损失。在两个大型水下数据集上进行了量化实验,并与7种水下图像增强算法进行对比。以峰值信噪比和结构相似性为有参考评估指标,以水下评估指标为无参考评估指标进行实验。实验结果表明,提出的水下图像增强网络能够有效地解决图像的颜色失真与对比度降低问题。

关键词:水下图像;质量增强;视觉Transformer;神经网络

Keywords:underwaterimage;qualityenhancement;visionTransformer;neuralnetwork

本文引用格式

丛晓峰,桂杰,章军.基于视觉Transformer的多损失融合水下图像增强网络.智能科学与技术学报[J],2022,4(4):522-532doi:10.11959/j.issn.2096-6652.202252

CONGXiaofeng.UnderwaterimageenhancementnetworkbasedonvisualTransformerwithmultiplelossfunctionsfusion.ChineseJournalofIntelligentScienceandTechnology[J],2022,4(4):522-532doi:10.11959/j.issn.2096-6652.202252

UWT-Net采用了编码-解码的结构方式,包括编码的降维过程和解码的升维过程。编码过程负责学习特征表示,解码过程负责增强图像的像素重建。下面给出UWT-Net的整体结构及前向计算的原理,并分别对网络的各个模块进行介绍。

(1)整体网络架构

图1编码-解码结构的Transformer网络

(2)并行连接编码模块

(3)分块与块投射

(4)下采样模块与上采样模块

在编码过程中,Transformer模块前使用了下采样模块降低特征图尺寸,下采样模块通过步长为2且核尺寸为3×3的卷积实现。在解码过程中,Transformer模块前使用了上采样模块提升特征图尺寸,并且采用步长为1的卷积及像素重组(pixelshuffle)操作将特征图尺寸提升一倍。

(5)Transformer模块

基本的Transformer模块主要包含两个核心组件,第一个是多头自注意力模块,采用的是基于窗口的模式,第二个是多层感知机模块。为了实现信息的有效传递,Transformer模块一般采用层归一化(layernorm)模块对信息流进行处理,第i层的计算方式如式(2)~式(3)所示:

图2Transformer模块结构

为了对增强网络进行有效优化,设计了多种损失组合的方式对网络的参数进行更新。损失的设计从以下4个方面展开。

·像素损失(pixelloss):像素损失在像素层面对网络进行优化,使增强后图像的像素值趋近参考图像。

·结构损失(structuralloss):为了精确地对水下图像的结构信息进行复原,根据结构相似性原理使用结构损失优化网络。

·边缘损失(edgeloss):水下图像的边缘信息是图像质量的重要组成部分,因此将基于梯度的边缘损失作为总体损失中的一项。

·特征损失(featureloss):基于大规模图像数据集训练得到的模型可以表征图像的统计规律,因此使用特征损失对增强网络进行优化可以提高增强效果。

(1)像素损失

逐像素计算的损失是图像复原任务的基础损失,对增强网络的优化采用L1损失,则像素损失计算如式(4)所示:

其中,w和h分别为图像的长和宽,i和j分别为增强结果和参考图像的像素位置。

(2)结构损失

其中,uη和uy分别为增强后图像和参考图像的均值,ση和σy分别为增强后图像和参考图像的方差,σηy为协方差,C1与C2为常数,P为像素。SSIM的值越大,代表两张图像的相似程度越高,所以结构损失的定义如式(6)所示:

其中,N为图像块P中的像素数量。

(3)边缘损失

其中,Gh和Gv分别为水平和垂直方向的梯度值。

(4)特征损失

(5)总体损失与训练流程

上述4种用于水下图像增强网络训练的损失需要在每次迭代中被同时计算,并用于指导网络参数的更新,损失的组合方式为线性加权,具体如式(9)所示:

其中,λs、λe与λf分别为对应损失的权重值,具体的设置见第3节。对所设计的增强网络和组合型损失,采用梯度下降算法进行网络的参数更新。增强网络的训练流程伪代码见算法1。

算法1增强网络的训练流程伪代码

初始化

更新参数

endfor

图3UIEB和EUVP-US的失真图像和参考图像

其中,k为比特数,对于当前数据集,k=8。SSIM是结构信息复原效果的评估指标。UIQM被广泛用于水下图像增强的质量评估任务,它主要包括3个角度的评估,第1是水下图像的色彩评估,第2是水下图像的锐度评估,第3是水下图像的对比度评估,将3种评估值进行线性求和可以获得最终的UIQM值。

表1UIEB数据集上的定量实验结果

图4UIEB测试集的增强效果

表2EUVP-US数据集上的定量实验结果

针对UWT-Net的消融实验分为两部分:第一部分是UWT-Net训练过程所用损失的对比研究,第二部分是网络结构的对比研究。消融实验使用的是UIEB数据集。

(1)损失的消融实验

实验中采用多损失组合优化的方式对神经网络的参数进行更新,分别为像素损失、结构损失、边缘损失和特征损失。像素损失是主体损失,其余3种损失是辅助损失。为了验证所选择的损失是有效的,需要对损失组合情况下获得的水下图像增强效果进行量化分析。针对损失的消融实验分为以下4组。

·设置1:L1损失+结构损失+边缘损失+特征损失。

·设置2:L1损失+结构损失+边缘损失。

·设置3:L1损失+边缘损失+特征损失。

图5EUVP-US测试集的增强效果

·设置4:L1损失+结构损失+特征损失。

设置1包含了所有损失项,设置2、设置3和设置4中分别在设置1的基础上去掉一种损失,目的是验证去掉的损失对水下图像增强任务是否具有促进作用。

表3L1损失消融实验结果

(2)网络结构的消融实验

图6整体损失L的收敛情况

本文针对水下图像的颜色失真与对比度降低问题,将视觉Transformer模型作为基础网络模块,构建了端到端的水下图像增强模型UWT-Net。模型的训练过程将4种不同类型的损失组合作为图像增强网络的整体损失,4种损失分别从像素、结构、边缘和特征的角度设计,能够有效地对增强网络的参数更新过程进行指导。本文在两个公开的水下图像数据集上进行了定量和定性的实验,将提出的水下图像增强模型与其他水下图像增强模型进行对比与分析,实验结果表明,本文设计的模型能够获得较高的峰值信噪比,并保证增强后的水下图像与参考图像具有较高的结构相似性。

图74种损失的收敛情况

严浙平,曲思瑜,邢文.水下图像增强方法研究综述

YANZP,QUSY,XINGW.Anoverviewofunderwaterimageenhancementmethods

DREWSJRP,DONASCIMENTOE,MORAESF,etal.Transmissionestimationinunderwatersingleimages

DREWSJRP,NASCIMENTOER,BOTELHOSSC,etal.Underwaterdepthestimationandimagerestorationbasedonsingleimages

PENGYT,COSMANPC.Underwaterimagerestorationbasedonimageblurrinessandlightabsorption

SONGW,WANGY,HUANGDM,etal.Arapidscenedepthestimationmodelbasedonunderwaterlightattenuationpriorforunderwaterimagerestoration

LIUP,WANGGY,QIH,etal.Underwaterimageenhancementwithadeepresidualframework

NAIKA,SWARNAKARA,MITTALK.Shallow-UWnet:compressedmodelforunderwaterimageenhancement(studentabstract)

LICY.Underwaterscenepriorinspireddeepunderwaterimageandvideoenhancement

BERMAND,LEVYD,AVIDANS,etal.Underwatersingleimagecolorrestorationusinghaze-linesandanewquantitativedataset

LIUZ,LINYT,CAOY,etal.SwinTransformer:hierarchicalvisiontransformerusingshiftedwindows

ZAMIRSW,ARORAA,KHANS,etal.Restormer:efficienttransformerforhigh-resolutionimagerestoration

DOSOVITSKIYA,BEYERL,KOLESNIKOVA,etal.Animageisworth16×16words:transformersforimagerecognitionatscale

LIJ,SKINNERKA,EUSTICERM,etal.WaterGAN:unsupervisedgenerativenetworktoenablereal-timecolorcorrectionofmonocularunderwaterimages

常戬,韩旭.结合导向滤波与自适应算子的水下图像增强

CHANGJ,HANX.Underwaterimageenhancementcombiningguidefilteringwithadaptiveoperator

李颖,陈龙,黄钊宏,等.基于多尺度卷积神经网络特征融合的植株叶片检测技术

LIY,CHENL,HUANGZH,etal.Plantleafdetectiontechnologybasedonmulti-scaleCNNfeaturefusion

王禾扬,杨启鸣,朱旗.基于深度卷积集成网络的视网膜多种疾病筛查和识别方法

WANGHY,YANGQM,ZHUQ.Retinalmulti-diseasescreeningandrecognitionmethodbasedondeepconvolutionensemblenetwork

邵虹,张鸣坤,崔文成.基于分层卷积神经网络的皮肤镜图像分类方法

SHAOH,ZHANGMK,CUIWC.Classificationmethodofdermoscopicimagebasedonhierarchicalconvolutionneuralnetwork

陈龙,丁丹丹.多残差联合学习的水下图像增强

CHENL,DINGDD.Jointmulti-residuallearningforunderwaterimageenhancement

范新南,杨鑫,史鹏飞,等.特征融合生成对抗网络的水下图像增强

FANXN,YANGX,SHIPF,etal.Underwaterimageenhancementbasedonfeaturefusiongenerativeadversaralnetworks

LICY,GUOCL,RENWQ,etal.Anunderwaterimageenhancementbenchmarkdatasetandbeyond

GUOYC,LIHY,ZHUANGPX.Underwaterimageenhancementusingamultiscaledensegenerativeadversarialnetwork

FABBRIC,ISLAMMJ,SATTARJ.Enhancingunderwaterimageryusinggenerativeadversarialnetworks

BOUDIAFA,GUOYH,GHIMIREA,etal.Underwaterimageenhancementusingpre-trainedtransformer

VASWANIA,SHAZEERN,PARMARN,etal.Attentionisallyouneed

SONGYD,HEZQ,QIANH,etal.Visiontransformersforsingleimagedehazing

ZHAOH,GALLOO,FROSIOI,etal.Lossfunctionsforimagerestorationwithneuralnetworks

ZHANGH,PATELVM.Denselyconnectedpyramiddehazingnetwork

JOHNSONJ,ALAHIA,LIFF.Perceptuallossesforreal-timestyletransferandsuper-resolution

SIMONYANK,ZISSERMANA.Verydeepconvolutionalnetworksforlarge-scaleimagerecognition

ISLAMMJ,XIAYY,SATTARJ.Fastunderwaterimageenhancementforimprovedvisualperception

LICY,QUOJ,PANGYW,etal.Singleunderwaterimagerestorationbyblue-greenchannelsdehazingandredchannelcorrection

WANGY,SONGW,FORTINOG,etal.Anexperimental-basedreviewofimageenhancementandimagerestorationmethodsforunderwaterimaging

PANETTAK,GAOC,AGAIANS.Human-visual-system-inspiredunderwaterimagequalitymeasures

THE END
1.龙源振华申请浑浊水下图像增强专利,实现浑浊水下图像增强快报龙源振华申请浑浊水下图像增强专利,实现浑浊水下图像增强 快报金融界灵通君 北京 0 打开网易新闻 体验效果更佳湖北一女子,嫁到了上海 盈天爱搞笑 399跟贴 打开APP 不愧是糖精车间的,说话都那么甜 二虎撩剧 1715跟贴 打开APP 不可思议的马路小风扇,给路中间放个风扇,有趣的现象发生了 钢蛋探世界 2381跟贴 https://m.163.com/v/video/VPJ17N2CV.html
2.付海生泻药。最近回顾了一下ViT的结构,发现从文本Transformer出发解释会好理解很多。ViT其实就是图像版的BERT,除了一开始从输入到embedding与BERT不同之外,其他的技巧好好学习 真的看不下去现在b乎的风气,nc水不水也要看专业好不好?cvpr放在cs专业也得2,3篇才能让博士毕业啊。另外,天天嘴上谁nc水,cvpr不行,你倒是https://www.zhihu.com/people/fu-hai-sheng-83
3.基于深度学习的水下图像增强算法研究因此,对水下图像质量提升的深入研究,具有非常宝贵的理论意义和重要的实际应用价值。所以,本文针对水下图像存在的局部或整体模糊、色彩饱和度低等问题,提出一种基于深度学习的水下图像增强算法。首先,采用一种残差递归对抗网络模型对水下图像进行去模糊处理。该模型采用多尺度体系结构,每个尺度上网络模型保持一致,均采用https://wap.cnki.net/lunwen-1020122283.html
4.基于深度学习的水下图像增强算法研究消融实验也验证了本文提出的密集特征融合模块和深度增强模块在细节特征恢复上的有效性。(2)为了进一步解决水下图像增强算法实时应用的问题,本文提出了一种基于超分辨率的水下图像增强模型,该模型不仅能恢复水下图像的颜色,而且还能以2倍、4倍的尺度提高图像的分辨率,这为实时应用提供方便。模型引入了残差密集块,该结构https://cdmd.cnki.com.cn/Article/CDMD-10300-1021778946.htm
5.水下图像增强现有的方法总结水下图像增强算法大家好!本人打算以后对水下图像增强类的文章进行讲解(含部分代码),以及和大家分享一下怎么写这类的文章。希望大家多多支持,觉得博主讲的还行的可以点个关注,谢谢大家。以下是水下图像增强的主要三种方法:基于非物理模型、基于物理模型与基于深度学习的方法 https://blog.csdn.net/weixin_55059761/article/details/141785722
6.水尺水位识别监测算法燧机科技水尺水位识别监测算法基于虚拟水尺的水位图像识别技术具有多项优势,包括高准确性、实时性、易部署等。这种技术不仅适用于水文监测,还能够为能源行业的现代化管理提供技术支持。例如,在水库管理、河流监控等领域,该技术可以大大提高水资源管理的效率和效果。水尺水位识别监测算法基于YOLOv5+CNN的视觉算法在水位监测https://www.bilibili.com/opus/1011207156042563602
7.多尺度语义特征水下图像增强研究目前,水下图像增强与复原分为非深度学习方法与深度学习方法[2]。基于非深度学习方法主要分为2种:一种是图像增强,以像素点的基础使图像清晰,比如:直方图均衡化[3]、白平衡[4]、MSRCR[5]等算法,该类算法忽略传感器镜头在水下环境中的成像模型,导致红通道缺失,甚至出现伪影,用增强算法处理后的水下图像色彩容易增强https://www.fx361.com/page/2022/1214/17780778.shtml
8.自适应水下图像增强算法激光与光电子学进展针对水下图像因成像环境造成的色彩失真、对比度下降、模糊等问题,提出一种自适应水下图像增强算法。首先,基于Lab色彩空间的局部色偏和全局色偏对衰减颜色进行色彩补偿,再利用灰度世界算法恢复水下图像的色彩平衡。其次,使用自动色阶和伽马校正方法调整各通道信息,以获https://www.opticsjournal.net/Articles/OJbd058434e3eefde1/FullText
9.图像增强算法综述基于机器视觉和深度学习的材料缺陷检测应用综述. 材料导报. 2022(16): 226-234 . 51. 严浙平,曲思瑜,邢文. 水下图像增强方法研究综述. 智能系统学报. 2022(05): 860-873 . 52. 祝汉城,周勇,李雷达,赵佳琦,杜文亮. 个性化图像美学评价的研究进展与趋势. 中国图象图形学报. 2022(10): 2937-2951 . http://www.chineseoptics.net.cn/en/article/id/9522
10.基于多尺度特征提取的水下图像增强模型目前主流 的水下图像增强算法主要分为三类:基于非物理模型的方法[3-8] ,基于物理模型的 方法[9-15] 和基于深度学习的方法[16-21] . Iqbal 等[3] 提出了基于直方图拉伸的无监督颜色校正 方法( UCM) ,分别在 RGB 空间增强对比度和 HSI 空间校正颜色. Huang 等[5] 提出一种基于自适应 参数采集的相对全局https://fm.fmiri.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=556
11.Kesci大赛项目:2020年全国水下机器人(湛江)大赛我们团队在此分享下在 “2020年全国水下机器人(湛江)大赛 - 水下目标检测算法赛” 这一比赛中的实验过程及心得体会。不足之处,还望批评指正。 一、大赛简介 「背景」随着海洋观测的快速发展,水下物体检测在海军沿海防御任务以及渔业、水产养殖等海洋经济中发挥着越来越重要的作用,而水下图像是海洋信息的重要载体https://www.shangyexinzhi.com/article/1705516.html
12.基于深度学习的水下生物目标检测方法综述山东科学 SHANDONG SCIENCE DOI:10.3976 / j.issn.1002~4026.2023.06.001 第 36 卷第 6 期 2023 年 12 月出版 Vol.36 No.6 Dec.2023 【 海洋科技与装备】 基于深度学习的水下生物目标检测方法综述 于雨1a?1b ?郭保琪2 ?初士博1a?1b ?李恒1a?1b ?杨鹏儒1a?1b (1.齐鲁工业大学https://www.sdkx.net/CN/article/downloadArticleFile.do?attachType=PDF&id=1601
13.的图像去雾算法来啦!前面给大家介绍过14种低照度图像增强算法这个透射率告诉了图像去雾系统我们需要恢复多少被雾霾遮盖的细节。然后,系统会根据透射率对图片进行调整。它会让照片中的像素更加亮丽,同时减少雾霾造成的影响。具体来说,图像去雾算法可以分为基于图像增强的去雾算法、基于图像复原的去雾算法和基于深度学习的去雾算法。本文主要研究介绍基于深度学习的去雾算法介绍基于https://juejin.cn/post/7255312213480194107
14.基于GA一阶段目标检测方法较二阶段目标检测方法有着较快的检测速度, 如RetinaNet算法使用不同的特征图对不同尺寸的物体进行, 提高了检测效率, 在实际作业中实用性较高. 所以现有的基于深度学习的水下目标检测算法多属一阶段目标检测. Zhou等人[17]提出使用3种图像增强方法对数据集进行扩充, 再通过Faster R-CNN网络完成对https://c-s-a.org.cn/html/2023/6/9134.html