综述深度聚类及相关算法人工智能

深度聚类是一种结合了深度学习模型和聚类算法的方法,用于自动地从数据中学习特征并将数据分组成具有相似特征的类别。相较于传统的聚类算法,深度聚类能够有效处理高维度、非线性和复杂的数据,并具有更好的表现力和精度。通过深度学习模型,深度聚类可以学习到数据的抽象表示,从而更好地捕捉数据的内在结构和相似性。这种方法的优势在于能够自动地学习到数据的特征,而无需手动定义特征,从而减少了人为因素的干扰。深度聚类在许多领域都有广泛的应用,如计算机视觉、自然语言处理和推荐系统等。

深度聚类的核心思想是利用深度学习模型将数据降维到低维度表示,并在低维空间中进行聚类。主要步骤包括数据预处理、搭建深度学习模型、训练模型获取低维表示和应用聚类算法进行聚类。

1)建立深度学习模型:选择适合问题的深度学习模型,如自编码器、变分自编码器、生成对抗网络等。

2)特征提取:利用深度学习模型从原始数据中提取特征,将高维度数据降维到低维度表示。

3)聚类分析:在低维度空间中进行聚类分析,将数据分组成具有相似特征的类别。

4)反向传播:根据聚类结果,利用反向传播算法更新深度学习模型,以提高聚类精度。

自编码器聚类是一种基于深度学习的无监督聚类算法,它通过学习数据的低维表示来实现聚类。自编码器聚类的基本思想是:将高维度的输入数据通过编码器映射到低维空间,再通过解码器将低维度的数据重构回原始数据。该算法的步骤如下:

1.定义自编码器的结构,包括编码器和解码器,其中编码器将输入数据映射到低维空间,解码器将低维度的数据重构回原始数据。

2.使用无监督学习算法对自编码器进行训练,目标是最小化重构误差,即在原始数据和重构数据之间的差异。

3.使用编码器将原始数据映射到低维空间,并使用聚类算法对低维度的数据进行聚类,得到最终的聚类结果。

深度嵌入聚类是一种基于深度学习的无监督聚类算法,它通过学习数据的嵌入表示来实现聚类。深度嵌入聚类的基本思想是:通过多层非线性变换将原始数据映射到低维度的嵌入空间,并使用聚类算法对嵌入空间中的数据进行聚类。该算法的步骤如下:

1.定义深度嵌入网络的结构,包括多个非线性变换层和一个嵌入层,其中非线性变换层通过学习将原始数据映射到低维度的嵌入空间,嵌入层用于对嵌入空间中的数据进行聚类。

2.使用无监督学习算法对深度嵌入网络进行训练,目标是最小化嵌入空间中的数据点之间的距离,同时使不同聚类之间的距离尽可能大。

3.使用嵌入层将原始数据映射到低维度的嵌入空间,并使用聚类算法对嵌入空间中的数据进行聚类,得到最终的聚类结果。

谱聚类是一种基于图论的聚类算法,它将数据点看作图中的节点,将它们之间的相似度看作图中的边权,然后使用谱分解对图进行划分。谱聚类的基本思想是:将数据点映射到低维度的特征空间中,在特征空间中对数据点进行聚类。该算法的步骤如下:

1.构建数据点之间的相似度矩阵,常用的相似度度量包括欧几里得距离、余弦相似度等。

2.构建拉普拉斯矩阵,包括度矩阵和邻接矩阵的差。

3.对拉普拉斯矩阵进行谱分解,得到特征向量和特征值。

4.选择前k个特征向量,将数据点投影到低维度的特征空间中。

5.使用聚类算法对特征空间中的数据点进行聚类,得到最终的聚类结果。

层次聚类是一种基于树状结构的聚类算法,它将数据点逐层地划分为不同的聚类簇。层次聚类的基本思想是:将每个数据点看作一个初始聚类,然后不断将相似度最高的聚类合并,直到最终得到一个大的聚类簇或者指定的聚类簇数目。层次聚类的步骤如下:

1.计算数据点之间的相似度矩阵,常用的相似度度量包括欧几里得距离、余弦相似度等。

2.将每个数据点看作一个初始聚类。

3.计算每个聚类之间的相似度,常用的相似度度量包括单链接、完全链接、平均链接等。

4.不断地将相似度最高的聚类合并,直到最终得到一个大的聚类簇或者指定的聚类簇数目。

生成对抗网络聚类是一种基于生成对抗网络(GAN)的聚类算法,它通过生成器和判别器的对抗学习来实现聚类。生成对抗网络聚类的基本思想是:将数据点看作生成器的输入,通过生成器生成低维度的嵌入向量,并使用判别器对嵌入向量进行聚类。该算法的步骤如下:

1.定义生成器和判别器的结构,其中生成器将高维度的输入数据映射到低维度的嵌入向量,判别器用于对嵌入向量进行聚类。

2.使用无监督学习算法对生成器和判别器进行训练,目标是使生成器生成的嵌入向量尽可能接近真实的低维度向量,并使判别器能够准确地对嵌入向量进行聚类。

3.使用生成器将原始数据映射到低维度的嵌入空间,并使用聚类算法对嵌入空间中的数据进行聚类,得到最终的聚类结果。

深度聚类网络是一种基于深度学习的无监督聚类算法,它通过联合训练编码器和聚类器来实现聚类。深度聚类网络的基本思想是:将原始数据经过编码器编码到低维度的嵌入空间中,然后使用聚类器对嵌入空间中的数据进行聚类。该算法的步骤如下:

1.定义深度聚类网络的结构,包括编码器和聚类器,其中编码器将原始数据映射到低维度的嵌入空间,聚类器用于对嵌入空间中的数据进行聚类。

2.使用无监督学习算法对深度聚类网络进行联合训练,目标是最小化嵌入空间中的数据点之间的距离,同时最小化聚类器的聚类误差。

3.使用编码器将原始数据映射到低维度的嵌入空间,并使用聚类器对嵌入空间中的数据进行聚类,得到最终的聚类结果。

深度集成聚类是一种基于深度学习和集成学习的聚类算法,它通过将多个聚类模型进行集成来提高聚类的准确性。深度集成聚类的基本思想是:通过训练多个深度聚类模型,然后将它们的聚类结果进行集成,得到更加鲁棒和准确的聚类结果。该算法的步骤如下:

1.定义多个深度聚类模型的结构和超参数,包括编码器、聚类器、优化器等。

2.使用有监督或无监督学习算法对多个深度聚类模型进行训练,目标是最小化聚类误差。

3.将多个深度聚类模型的聚类结果进行集成,常用的集成方法包括投票法、加权平均法、聚合法等。

4.对集成后的聚类结果进行评估和分析,选择最优的聚类结果作为最终结果。

自适应聚类网络是一种基于深度学习和自适应学习的聚类算法,它通过不断调整聚类器的参数来适应数据分布的变化和聚类结构的变化。自适应聚类网络的基本思想是:通过训练聚类器来适应数据分布的变化,同时根据聚类结构的变化自适应调整聚类器的参数。该算法的步骤如下:

1.定义自适应聚类网络的结构,包括编码器、聚类器、自适应调整模块等。

2.使用无监督学习算法对自适应聚类网络进行训练,目标是最小化聚类误差,并通过自适应调整模块不断调整聚类器的参数。

3.在实际应用中,自适应聚类网络不断接收新的数据,并根据数据分布和聚类结构的变化自适应调整聚类器的参数,从而实现自适应聚类。

基于密度的深度聚类是一种基于密度的聚类算法,它通过计算数据点的密度来实现聚类。基于密度的深度聚类的基本思想是:将数据点看作密度分布的样本点,通过计算样本点之间的距离和密度来实现聚类。该算法的步骤如下:

1.计算每个数据点的密度和局部密度。

2.选择一个密度阈值,将密度低于阈值的数据点作为噪声点。

3.选择一个邻域半径,将密度高于阈值的数据点看作核心点,并将距离核心点在邻域内的数据点看作直接密度可达点。

4.将直接密度可达点连接起来,形成聚类簇,并将剩余的密度可达点划分到相应的聚类簇中。

5.将噪声点排除在聚类之外。

以上是一些常见的深度聚类算法及其基本思想和步骤,它们都具有不同的特点和适用范围,可以根据实际情况选择合适的算法进行聚类分析。

THE END
1.自适应学习率算法:智能调整学习步伐传统的梯度下降法通常采用固定的学习率,但这在实际应用中往往会遇到一些问题。例如,学习率过大可能导致模型震荡,无法收敛到最优解;而学习率过小则会导致收敛速度过慢,训练时间过长。为了解决这些问题,研究人员提出了自适应学习率算法,它能够根据训练过程中的信息动态调整学习率,从而提高模型的训练效率和性能。 https://download.csdn.net/blog/column/12592623/138250357
2.什么是自适应学习自适应学习简介自适应学习(adaptive learning)是一种基于学习者的个体差异和学习需求,为每个学习者提供定制化的学习内容和学习路径的学习方式。自适应学习通常使用人工智能、机器学习、数据挖掘等技术,通过对学习者的学习行为和反馈数据的分析,为学习者提供个性化的学习内容和学习路径,以提高学习效果和学习满意度。 https://cloud.tencent.com/developer/techpedia/1763
3.自适应学习率算法(六)自适应学习率算法51CTO博客Delta-bar-delta算法是一个早期的在训练时适应模型参数各自学习率的启发方式。该方法基于一个很简单的想法,如果损失对于某个给定模型参数的偏导数保持相同的符号,那么学习率应该增加。如果对于该参数的偏导变化了符号,那么学习率应该更小。最近,提出了一些增量(或者基于小批量)的算法来自适应模型参数的学习率。 https://blog.51cto.com/u_13977270/3398969
4.深度学习常用优化器——自适应学习率算法上一篇说了一下改进梯度的最优化算法,下面说一下自适应学习率算法,以及两者的结合。自适应学习率算法主要是相对不同参数和训练的不同阶段有不同的学习率。 1.自适应学习率算法 —— AdaGrad AdaGrad应该是Adaptive Gradient的缩写,是怎么个适应法呢,就是每个参数都有自己的学习率,这里的学习率是和每个参数的梯度相https://www.jianshu.com/p/dfeba2ac6559
5.自适应算法在网络学习系统的应用研究AET摘要: 随着现代信息技术与教育产业的深度融合,建设远程开放式的网络学习平台已成为构建智慧校园网的核心;同时也为构建学习型社会,实现终身教育提供了环境支撑和技术保障。主要着手于自适应算法研究,以网络学习者为对象,针对网络学习平台中存在的问题,设想将自适应算法引入到网络学习平台中,设计一个包含自适应网络学习模型http://www.chinaaet.com/article/3000015389
6.基于自适应LASSO先验的稀疏贝叶斯学习算法其中,∥·∥1表示?1范数.凸优化问题 (3)可以通过LASSO 算法进行求解,但是LASSO 算法不能一定保证收敛,为提高算法性能,Zou 在文献[20]中对LASSO 算法进行了改进,提出了自适应LASSO算法,并对该算法的Oracle 特性进行了证明1Oracle 特性具体包括模型选择相和性和参数估计渐进正态性.其含义为,在一些变量不是提前已https://www.fx361.com/page/2022/0618/14396851.shtml
7.工业过程故障检测自适应流形学习算法研究及应用针对这些问题,基于现有研究基础,本文提出一种自适应流形学习算法用于工业过程故障检测领域,并进行实例仿真来验证该方法的有效性和可行性。(1)介绍了本文研究背景和意义,对工业过程故障检测领域的主要研究内容和现状进行描述。根据实际工业过程中变量数据存在的特性,剖析了现有故障检测方法的局限性,阐述了流形学习方法在故障https://cdmd.cnki.com.cn/Article/CDMD-10673-1018250920.htm
8.[多智能体强化学习笔记]CM3:合作式多目标多阶段多智能体强化学习为了应对这两个挑战,我们将问题重组为一个新的两阶段问题,在学习多智能体合作之前先学习单智能体目标的实现,并推导出一个新的多目标多智能体策略梯度,该梯度具有局部信用分配的信用函数。 完整的体系结构称为CM3,在三个具有挑战性的多目标多智能体问题上,其学习速度明显快于现有算法的直接适应:困难编队中的合作导航https://zhuanlan.zhihu.com/p/451200587
9.检测区域自适应调整的TLD多目标跟踪算法1 DKF检测区域自适应调整检测算法 TLD算法的运行速度虽然优于一般在线学习方法, 但其检测器要对每一帧的整幅图像的所有子窗口进行检索, 由于子窗口过多, 而绝大部分子窗口并不包含真正的跟踪目标, 所以对这些子窗口内的图像块进行检测会浪费大量运算时间, 严重影响目标跟踪的实时性.因此, 提出一种检测区域可动态https://xuebao.neu.edu.cn/natural/article/html/2017-2-214.htm
10.自适应学习是「忽悠」还是「突破」?我们和专注其中的公司聊了聊极在国外,自适应学习并不是个新鲜概念,相反,其是在上世纪七十年代随着人工智能的概念逐渐为人熟知。难怪王枫说,自适应学习就是人工智能在教育里的深度应用。根据维基百科的解释,自适应学习,也称为自适应教育,是一种教育方法,它使用计算机算法来协调与学习者的交互,并提供定制的资源和学习活动,以满足每个学习者的个性化https://www.geekpark.net/news/232390
11.增强型DeepLab算法和自适应损失函数的高分辨率遥感影像分类注册 登录 English Version 论文 图片 资讯 高级检索 首页 关于本刊 期刊在线 特色资源 写作指南 投稿须知 下载中心 期刊征订 联系我们 遥感智能解译 | 浏览量 : 0 下载量: 737 CSCD: 4 更多指标 PDF 导出 分享 收藏 专辑 增强型DeepLab算法和自适应损失函数的高分辨率遥感影像分类 Classification of high-https://www.ygxb.ac.cn/zh/article/doi/10.11834/jrs.20209200/
12.学习报告:一种基于能量的领域适应的主动学习方法所有的方法都是基于 pytorch 实现的, 使用了 ResNet 模型在 ImageeNet 上进行训练。同时比较了主动学习算法、主动领域自适应算法和域自适应算法。 图2 1. 主要结果 VisDA-2017 在VisDA-2017上标注预算为5% 的不同方法的实验结果列于表1的第一栏,证明 EADA 优于所有的基线。随机选取样本的性能优于 ResNet,https://www.scholat.com/teamwork/teamwork/showPostMessage.html?id=10971
13.科学网—随机梯度下降算法研究进展图4学习率对优化过程的影响 本文对近年来随机梯度下降算法的研究进展及主要研究成果进行了综述.根据算法的更新策略,将几种具有代表性的随机梯度下降算法分为四类,包括基于动量的算法、基于方差缩减的算法、基于增量梯度的算法以及自适应学习率的算法.本文介绍了这些算法的原理、核心思想以及相互之间的区别与联系,并通过数https://blog.sciencenet.cn/blog-3291369-1348385.html