架构算法方法论齐备,智能风控峰会完整日程!

石霖中国信通院云计算与大数据研究所内容科技部主任

个人介绍:石霖,现任中国信通院云计算与大数据研究所内容科技部主任,CCSATC602主席,主要从事人工智能、内容科技的技术研究、标准制定及测试评估工作,对信息安全、内容安全领域有丰富经验,参与智能审核、app加固、人脸识别、深伪检测等多项标准制定工作,圆满完成第二、三届中国人工智能大赛的举办工作,推动开展内容科技产业推进方阵、“护脸”计划等多项有助产业健康发展的工作。

专家团

蒋宏狮桥集团高级风控总监

个人介绍:蒋宏,狮桥智能风控高级总监,超过10年风控模型算法经验,在数据挖掘、机器学习、图谱应用、风险管理等方面有丰富的经验,主编书籍《智能风控实践指南:从模型、特征到决策》,曾任职德勤信息技术咨询顾问、百融风险部副总监、融360风控模型部负责人。上海交通大学学士、清华大学MBA。

个人介绍:刘宇,京东安全研发总监、京东安全技术委员会主席。2006年毕业于北京邮电大学计算机系,获得工学硕士学位。2006年~2014年,分别就职于摩托罗拉、雅虎中国、淘宝网,欧鹏,历任软件开发工程师、资深技术专家。2014年~2018年就职于易到用车,历任系统架构师、风控研发技术总监,亲身参与了网约车行业的百亿补贴大战及黑灰产对抗,并从0到1建设了易到风控系统-易盾。2018年加入京东集团风控,和团队一起建设京东风控体系,为京东业务保驾护航。2020年至今做为京东集团风控中台的项目经理及架构师,本着“共建共享、联防联控”的思想,联合各个业务板块的风控专家及架构师,整合各个业务板块的风控服务能力产品,实现京东生态内的风险共治。2021年《智能风控技术峰会》峰会主席及系统架构专场出品人。

个人介绍:拥有近十五年金融风险管理和智能风控领域业务策略、量化建模、解决方案、风控体系建设等工作经验,专注于商业银行、消费金融和金融科技行业,在智能风控策略模型数据体系建设、风险业务策略与量化模型、信贷资产组合管理、金融资产定价与风险管理、巴塞尔新资本协议、金融机构全面风险管理咨询、金融机构数字化转型、业务安全技术模型与策略、智能风控平台业务技术架构等方面积累了丰富的工作经验。曾在FICO、Accenture、GE等行业知名专业机构的风险咨询和分析咨询部门担任要职。

峰会议程

①风控体系建设方法论

出品人:李家琛bilibili风控负责人

个人介绍:硕士毕业于浙江大学自动化。曾就职美团风控,研究了一种通用算法对各场景进行高召回高准确。现任B站活动风控负责人,负责风控引擎以及不同业务风控。

1.互联网风控的分类

2.如何组件一支风控团队

3.如何行成一套风控体系

1.成为一个风控负责人需要哪些软技能和硬技能

2.风控体系飞轮如何旋转,对外承接业务,对外螺旋上升

3.对整个风控有全面认识

个人介绍:拥有13年安全技术研究和实战经验,曾任腾讯反诈骗实验室总监、T4-2级资深安全技术专家。在风控系统构建、策略对抗方面有丰富的实践经验。

1.风控攻防对抗中的挑战

2.风控体系中涉及到哪些情报

3.基于知识图谱的情报系统设计及实践

1.了解从攻击者的维度来思考风控体系中的攻防对抗点

2.了解到如何构建攻击情报系统,进而能够从更高维度来思考风控体系的建设

个人介绍:信息安全硕士毕业,目前在携程旅行,负责业务安全建设,主要集中在设备、账号对抗、业务防控,情报建设。

演讲题目:甲方威胁情报建设实践

演讲提纲:主要介绍甲方电商,业务威胁情报的定义、种类,落地使用的方法,情报和风控规则、风控基建如何互相驱动改进。

听众收益:

1.外部情报在甲方如何落地使用

2.内部情报如何做增益

3.情报运营中碰到的问题

个人介绍:本科毕业于中国科学技术大学少年班学院,硕士就读于伊利诺伊大学香槟分校。现就职于莉莉丝游戏,负责全游戏反欺诈业务,从0到1搭建风控系统、策略算法、风控产品,包括但不限于内容安全、支付风险、账号安全、脚本外挂、打金工作室识别等

演讲题目:手游反欺诈体系的设计与探索

演讲题目:数美风控体系建设总结与实践

演讲提纲:

1.风控体系关键元素

2.风控体系运营流程

1.一套风控体系搭建需要的考虑关键元素

2.一套风控体系搭建需要的建设流程

扫描二维码免费报名

②风控系统架构

出品人:朱杰奇富科技风控技术总监

雷柴卫奇富科技架构管理与公用平台架构师

个人介绍:雷柴卫,奇富科技架构师。主要研究方向为金融科技大数据以及AI在智能风控领域的应用以及拓展,包括图数据挖掘、AI工程、决策引擎、实验平台。

1.如何够条件智能风控与数据的生态闭环;

2.智能风控中数据的高可用与灾备;

3.智能风控的大数据实验。

1.智能风控生态闭环的搭建

2.智能风控数据高可用思考

3.大数据和人工智能在智能风控的深度探索

1.实时风险洞察面临的挑战

2.实时风险洞察的架构演进

3.核心组件剖析

4.未来的思考与展望

1.高吞吐的实时写入、高性能的实时计算与查询

2.OLAP如何选型?

3.异常检测模型在预警领域的应用

个人介绍:李瑞毕业于武大硕士研究生,在风控领域深耕6年多,对直播行业的黑产有丰富的对抗经验,目前是斗鱼业务安全的负责人。

演讲题目:斗鱼直播实时风控引擎快速对抗探索实践

1.直播行业的黑产问题

2.全栈式风控引擎的建设

3.快速对抗的有效措施

4.思考与展望

1.如何提升研发对抗策略的效率

2.介绍风控策略模型在斗鱼的实践方法

个人介绍:王欢,融360算法经理,国内线上模型负责人,硕士毕业于中科院软件所,书籍《智能风控实践指南》作者之一,曾参与国内及海外多个业务线的风控搭建、建模及特征工作,在风控模型和特征挖掘方面有丰富的实践经验。

演讲题目:风控场景全流程模型构建及应用实践

演讲提纲:针对在风控实践各场景下遇到的问题和挑战,构建模型来解决这些问题,以及介绍模型最终在业务中的应用方式。

1.贷前、贷中及贷后各场景下遇到的问题及挑战

2.针对典型场景介绍模型构建及上线应用的过程

3.模型应用的局限及优化探索

1.风控各业务场景下会遇到哪些问题及挑战?

2.如何充分利用各场景下的可用数据,搭建风控模型体系?

3.不同场景下数据获取及应用方式有哪些区别?

③风控算法

出品人:汪浩然资深风控和图计算专家

个人介绍:英国硕士,业内有算法百晓生和扫地僧之称,自幼好算法,遍干互联网诸侯,曾在蚂蚁金服,阿里巴巴,腾讯等公司主要从事风控算法,社交计算和图计算等工作,三十入风控,历抵圈内卿相,横跨金融,支付,电商,供应链,社区,社交等场景。率先工业界落地过诸多图上挖掘和机器学习算法。

个人介绍:毕业于清华大学自动化系模式识别与智能系统专业,曾就职于华为、快手负责多模态算法研发,现就职于北京枫清科技图智能分析部,复杂图算法和图机器学习设计、开发。

1.如何快速筛选环路?

2.如何优化分布式场景下的环路检测算法内存消耗?

3.环路检测在金融风控场景下如何使用?

个人介绍:许嘉蓉,复旦大学青年副研究员。主要研究方向包括图数据挖掘、图隐私计算,研究工作发表在人工智能顶级会议和期刊KDD、AAAI、NeurIPS、IJCAI、TKDE、TKDD等上,曾指导学生获得AAAI杰出论文奖,担任KDD、NeurIPS、WWW、AAAI、WSDM、TKDE等多个重要国际会议及期刊评审。

1.何时需要进行图预训练?

2.图预训练的数据是否越多越好?

此外,还提供了三个广泛的应用场景:

1.提供图预训练模型的适用范围

2.量化图预训练的可行性指标

3.挑选预训练数据的解决方案

1.预训练图神经网络

2.何时需要进行图预训练?

3.图预训练的数据是否越多越好?

演讲题目:主动学习以及样本不均衡在图数据场景的探索

演讲提纲:在风控场景中,由于异常事件相对于正常事件的发生频率较低,因此会出现样本不均衡的问题。例如,交易数据中正常交易数目远远多于欺诈交易数目,这就导致了欺诈交易数据集过小的情况。另外,标注难也是风控领域面临的一个挑战。由于涉及大量复杂的交易和操作流程,需要专业的知识和经验才能正确地标注异常事件。同时,异常交易往往会被恶意用户精心伪造,使得标注更加困难。这些问题都会导致数据集的不完备性,从而影响模型的准确率和鲁棒性,本次内容我们将会介绍我们在图主动学习以及样本不均衡技术上的一些探索。

2.图数据样本不均衡的解决方法

个人介绍:本硕毕业于西安交通大学和南加州大学,曾就职于中国银联风险管理部,加入蚂蚁后曾负责蚂蚁账户盗用类风控算法、国际卡收单业务风控算法,目前负责蚂蚁国际B类资金账户风控算法。

演讲题目:非结构化数据智能风控

演讲提纲:本次演讲介绍蚂蚁国际风控的业务背景,以及在非结构化数据场景中的智能风控解决方案,提纲如下:

1.业务背景介绍

2.非结构化数据风控的挑战

3.算法技术方案

4.智能风控解决方案

1.多模非结构化数据中如何精准获取信息?

2.多模非结构化信息的真实性如何保障?

3.账户和交易真实性智能风控解决方案如何设计?

演讲题目:内容风控对抗系统的探索与实践

1.背景

2.问题分析

3.解决方案:对抗感知、模型自动化迭代、模型融合、智能决策

4.效果

1.对内容对抗体系的基本组成及运作方式有一个大概的了解

2.模型自动化生产中涉及到的一些难点,如数据收集等

3.针对文本对抗中,最常见的形近字对抗解决方案

④图分析与关系网络

出品人:单黎平度小满AI算法资深专家

个人介绍:单黎平,硕士毕业于北京大学计算机系,度小满科技AI算法资深专家,现任度小满AI平台负责人,专注于机器学习与人工智能技术提能增效与落地应用。

1、图机器学习基础知识

2、风控场景下的图算法设计

3、图机器学习在度小满风控中的实际应用案例

1.反洗钱业务背景

2.当前反洗钱的业务流程及痛点

3.如何应用图智能进行反洗钱分析

4.案例介绍

1.如何通过应用图智能,节省业务60%工作量?

2.如何更好的让业务人员应用图智能技术解决业务问题

3.好的图智能产品需要满足何种要素

个人介绍:本硕均毕业于武汉大学数学系,目前在虎牙负责账号与营销活动的黑灰产对抗,包括图聚类算法开发,实时特征挖掘开发等工作。

演讲题目:图聚类在虎牙风控的实践

1.虎牙业务场景下的风控挑战

2.图机器学习算法在虎牙风控的实践

2.风控场景下的图算法设计

3.图聚类在虎牙风控中的实际应用案例

演讲题目:应对复杂风险的下一代风控基础设施-全图风控

⑤实时风控

出品人:付典阿里云高级技术专家

1.介绍FlinkCEP基础概念

2.介绍阿里云实时计算团队在增强FlinkCEP功能方面所做的工作,包括:

2.1.支持动态CEP、支持多规则在同一数据流上进行匹配等新特性;

2.2.拓展了FlinkSQL的MATCH_RECOGNIZE语法,增强MATCH_RECOGNIZE表达能力;

2.3.通过增加Cache机制、优化CEP内部实现逻辑、修复state泄漏等工作,大幅提高了FlinkCEP性能与稳定性。

3.介绍FlinkCEP常见业务场景及实现思路。

1.了解什么是FlinkCEP以及如何使用FlinkCEP作为规则引擎来解决风控场景中的常见问题

2.了解动态CEP的实现原理

3.了解如何优化FlinkCEP作业

个人介绍:网易互娱技术中心计费实时平台与SDK技术负责人,ApacheFlinkContributor,FlinkCDCContributor。负责计费实时数据平台与SDK的设计和开发,参与了实时风控、用户画像、异构关联分析挖掘等业务的核心工作。

1.从T+1走向实时风控

2.实时业务会话风控引擎

3.实时风控平台的建设

4.从实时风控到DataOPS

5.发展历程与展望未来

1.基于Flink构造实时风控引擎的技术思路

2.实时风控规则管理、运维和应用

3.实时风控与DataOPS

演讲题目:Airwallex基于大数据和机器学习构建智能金融风控系统

1.公司业务背景介绍

2.主要风控场景

*Onboarding

·业务场景

·技术方案

*TransactionalMonitoring

*PostMonitoring

3.另一个维度,InfrastructureforRisk

·MLPlatform

·BigDataSolution

4.CaseStudy:如何使用Graphbasedsolution应对黑产团伙

5.未来发展方向

1.了解金融风控的需求以及技术挑战

2.了解基于Flink的流批一体风控解决方案

3.了解基于图数据识别黑产团伙

⑥典型风控实践

出品人:徐德华翼支付风险管理部总监

个人介绍:风险管理部总监,模型团队负责人,负责支付、电商、通讯反诈等风控模型体系建设。

个人介绍:2017年毕业,先后从事互联网金融风控算法、业务风控算法等岗位。目前在OPPO主要负责应用分发业务的黑灰产对抗,包括搭建实时和离线防刷系统,感知、识别和处置作弊。

主要内容包括:

1.平台业务及黑灰产攻击介绍

2.流量作弊的整体防控思路及架构

3.典型案例

4.总结

1.流量反作弊体系如何搭建、评估?

2.如何感知黑灰产的变化?

3.如何评估算法的识别效果?

个人介绍:多年风控算法实践落地经验,涉及o2o,电商,泛娱乐等多个行业,现任同盾算法专家。

演讲题目:人工智能在跨境交易风控中的应用

1.智能化防控相比传统防控的区别

2.行为序列在风控场景的技术落地

3.风控算法在跨境电商场景的技术落地

4.关系图谱在业务风控场景的落地

5.智能化风控防控体系

1.风控算法在跨境电商场景的技术落地

2.关系图谱在业务风控场景的落地

3.行为序列在风控场景的技术落地

个人介绍:反欺诈风控模型团队负责人,先后负责车险、健康险领域风控模型体系建设以及保险科技创新产品的研发。

演讲题目:保险反欺诈能力建设实践

1.车险领域,反欺诈技术应用有哪些?

2.健康险领域,反欺诈技术应用有哪些?

个人介绍:硕士毕业于电子科技大学,2015年加入蚂蚁集团大安全至今,专注于风控领域,先后参与蚂蚁集团第四代、第五代风控体系的建设工作,目前负责牵头蚂蚁集团交互式风控平台建设。

演讲题目:蚂蚁集团交互式主动风控在反欺诈领域的应用

1.平台建设背景

2.平台技术挑战

3.核心思路和系统架构

4.典型应用场景-叫醒热线

5.未来的思考

1.如何通过技术手段,帮助解决电信诈骗这一愈发突出的社会问题?

2.蚂蚁集团在反诈领域做了哪些尝试和成果?

3.支付宝叫醒热线是如何运作的?

个人介绍:在算法技术应用于产业实践深耕多年,曾在宜信全面负责借贷领域的风险策略及算法应用,目前在58后负责建设高质量的风控技术并推进应用落地,对风险对抗有全面透彻的理解,善于设计系统化、体系化、完备性的风控方案。

1.58的业务主要面临的黑产形态

2.业务安全是一个长期对抗的事情

3.58同城加速黑产治理的技术设计以及应用设计

1.学习如何将复杂的业务风控问题抽象为技术问题,并把技术方案还原为应用方案

2.了解58同城关于黑产治理中遇到的重重挑战以及应对措施,如何打造体系化、智能化的风控屏障

个人介绍:研究生毕业于上海交通大学自动化系。先后职于交通银行信用卡中心、51信用卡等。现就职于中国电信翼支付(甜橙金融),参与负责C端信贷风控全流程从0到1的初始搭建及完善。

THE END
1.主动学习(ActiveLearning)其基本思想是:如果允许机器学习算法选择它想要学习的数据,它可以在使用更少的训练标签的同时实现更高的精度。这种算法被称为主动学习器(active learner)。在训练过程中,主动学习器可以动态地提出查询,通常是以未标记数据样本的形式,由oracle(通常是人工标注员)进行标记。https://blog.csdn.net/qq_46450354/article/details/130167529
2.MachineLearning主动学习(AL)腾讯云开发者社区主动学习算法作为构造有效训练集的方法,其目标是通过迭代抽样,寻找有利于提升分类效果的样本,进而减少分类训练集的大小,在有限的时间和资源的前提下,提高分类算法的效率。主动学习已成为模式识别、机器学习和数据挖掘领域的研究热点问题。介绍了主动学习的基本思想,一些最新研究成果及其算法分析,并提出和分析了有待进一步研https://www.cloud.tencent.com/developer/article/1085463
3.算法干货主动学习算法学习笔记机器学习模型的更新:通过增量学习或者重新学习的方式更新模型,从而将人工标注的数据融入机器学习模型中,提升模型效果。 二、主动学习算法 通过图1主动学习流程发现,查询策略(Query Strategy Frameworks)是主动学习的核心之处,通常可以选择以下几种查询策略: 不确定性采样的查询(Uncertainty Sampling); https://developer.aliyun.com/article/1177917
4.主动学习算法综述摘要: 主动学习算法作为构造有效训练集的方法,其目标是通过迭代抽样,寻找有利于提升分类效果的样本,进而减少分类训练集的大小,在有限的时间和资源的前提下,提高分类算法的效率.主动学习已成为模式识别、机器学习和数据挖掘领域的研究热点问题.介绍了主动学习的基本思想,一些最新研究成果及其算法分析,并提出和分析了有待进https://d.wanfangdata.com.cn/periodical/jsjgcyyy201234001
5.小样本学习及其在美团嘲中的应用一个数据人的自留地2.5 主动学习 Active Learning(主动学习)通过一定的算法查询最有用的未标记样本,并交由专家进行标记,然后用查询到的样本训练分类模型来提高模型的精确度。模型抛出的未标注数据为“Hard Sample”,对于“Hard Sample”的不同定义可以衍生出一大堆的方法,如可以是Ambiguous Sample,即模型最难区分的样本;可以是对模型提升https://www.shangyexinzhi.com/article/4900642.html
6.科学网—[转载]强化学习在资源优化领域的应用基于这种行业趋势,本文针对强化学习算法在资源优化领域的应用展开调研,帮助读者了解该领域最新的进展,学习如何利用数据驱动的方式解决资源优化问题。鉴于资源优化问题场景众多、设定繁杂,划分出3类应用广泛的资源优化问题,即资源平衡问题、资源分配问题、装箱问题,集中进行调研。在每个领域阐述问题的特性,并根据具体的问题特性https://blog.sciencenet.cn/blog-3472670-1312677.html
7.《光谱学与光谱分析》2022年,第42卷,第01期最后基于随机森林(RF)和极限学习机(ELM)建立了矽卡岩型矿石金属铁品位的定量反演模型,以决定系数(R2)、均方根误差(RMSE)和平均相对误差(MRE)三个指标分别对模型的稳定性、精确度、可信度进行评价。结果表明,经MSC处理及PCA降维后的数据基于ELM算法建立的定量反演模型效果最优,其R2可达0.99、RMSE为0.005 7、MRE为http://www.sinospectroscopy.org.cn/readnews.php?nid=96845
8.揭秘AI诈骗的矛与盾!AI反网络诈骗白皮书出炉附下载智东西基于机器学习算法的电信网络诈骗防范治理技术应用可以分为分类和聚类两种应用形式。分类算法通过已知的诈骗样本、案例数据进行模型训练,在此基础上对新的行为事件进行涉诈风险分析预测。聚类算法通过全局分析和高维空间聚类,在无诈骗样本数据的情况下找出数据中隐含的共同特征,从而完成大规模关联诈骗团伙的自动发现。 https://www.zhidx.com/p/187581.html
9.招人啦!快来pick你心仪的职位吧~澎湃号·政务澎湃新闻6、良好的英文读写和表达能力;具备强烈的责任心与良好的团队合作精神及学习能力,工作积极主动、踏实认真,能够承受一定工作压力。 薪资范围:20000-30000元/月 算法资深工程师 岗位职责: 1、负责光谱分析相关算法的研究和应用,根据项目需求进行系统建模方法研究; https://www.thepaper.cn/newsDetail_forward_27165995
10.8加几教案设计(通用12篇)2、在观察、交流、比较中的活动中,理解并会运用“交换加数位置,和不变”的计算规律,体会算法多样化。 3、在学习中不断获得自信心,能主动参与数学活动。 学情分析 学生在前面的学习中已经掌握了一些计算方法,如点数、接着数、利用数的组成计算,和“凑十法”等,其中“凑十法”是进位加法中常用的计算方法,它具有https://www.unjs.com/jiaoan/shuxue/xiaoxue/20080121111738_56011.html
11.2022年度陕西省重点研发计划项目申报指南目录研究无标注或少样本下深度特征弱监督预学习模型和方法,解决影像数据的结构化标注数据的自动生成问题;研究结合迁移学习与主动学习的增量学习方法,解决实体目标增量标注问题。研制半监督、弱监督/无监督学习算法支持下的集数据收集、数据处理和智能化标注为一体的标注云平台,建立高效通用的数据标签与结构化的标注数据库。http://www.kt180.com/html/sxs/9889.html
12.三年级数学上册的教学反思(精选5篇)《可能性》是义务教育课程标准实验教科书小学数学三年级上册第八单元内容,通过解决简单实际问题,体会数学与生活的密切联系,感受学习数学的乐趣。在教学中,我注意让学生在游戏活动中,通过观察、操作、交流、反思等学习活动,调动兴趣主动学习。 一、教学导入以游戏化、生活化的形式调动起学生的积极性,引导学生体验知识的形https://www.ruiwen.com/jiaoxuefansi/2250463.html
13.76强化学习基础算法及实践强化学习介绍与示例机器学习通常被划分为 4 个大分支,分别是:监督学习、非监督学习、半监督学习以及强化学习。本次课程中,我们将对强化学习的概念进行介绍并完成算法应用实践。由于课程涉及内容难度较高,需要你已经基础的机器学习知识。 强化学习强调如何基于环境而行动,以取得最大化的预期利益。强化学习是一门正在快速发展的分支学科,许https://www.jianshu.com/p/6631d7f8db15
14.元宇宙系列之AI+数字孪生:视觉筑基,三维重建+动捕技术为翼实现路径:深度学习与传统路线实现互补,分别从宏观和微观连接物理世界和数字世界:1)三维重建领域,CNN(卷积神经网络)能从数据标注和修复、算法的优化等多方面对模型质量进行优化,解决传统方法精度和算力不足的问题,商汤等科技企业正在基于AI的三维重建领域探索商业化应用;2)动作捕捉领域,传统动作捕捉方法在电影、游戏制作等https://research.cicc.com/frontend/recommend/detail?id=3312
15.人脸检测中AdaBoost算法详解C语言人们为了让计算机看到这个世界并主动从这个世界寻找信息,发展了机器视觉;为了让计算机自主处理和判断所得到的信息,发展了人工智能科学。人们梦想,终有一天,人机之间的交流可以像人与人之间的交流一样畅通和友好。 而这些技术实现的基础是在人脸检测上实现的,下面是我通过学习基于 AdaBoost 算法的人脸检测,赵楠的论文的https://www.jb51.net/article/132556.htm