机器学习导论 1. 机器学习概述1.1 机器学习的定义机器学习是一门人工智能的核心分支,它赋予了 计算机 从数据中自动分析获得模式,并... 

机器学习由于具有自动建模、数据驱动的特点,可以应用于许多传统数据处理或人工经验累积困难的领域:

常见的机器学习算法按学习方式可分为:

监督学习(SupervisedLearning):算法从给定的训练数据(包含输入特征和标签输出)中学习函数映射规则,以用于新的输入数据预测。常见的监督学习算法有:线性回归、逻辑回归、决策树、支持向量机、神经网络等。监督学习典型应用有:图像分类、spam检测、住房价格预测等。

非监督学习(UnsupervisedLearning):算法只给予训练数据的输入特征而没有标签输出,需要从数据中自行发现隐藏的模式和规律。常见的非监督学习算法有:聚类、降维、关联规则挖掘等。非监督学习典型应用有:用户划分、基因分析、异常检测等。

强化学习(ReinforcementLearning):算法从与环境的交互体验中学习,通过获得的奖励或惩罚信号,自主获取经验,从而获得最优决策序列。强化学习常用于机器人控制、游戏AI等领域。

此外,半监督学习、主动学习等也是重要的机器学习方法。

按模型形式,可分为:生成模型和判别模型生成模型(GenerativeModel)是基于学习训练数据预测联合概率分布的模型,如高斯混合模型(GMM)、朴素贝叶斯模型、隐马尔可夫模型(HMM)等。判别模型(DiscriminativeModel)是直接从训练数据中学习决策函数或条件概率模型,如逻辑回归、线性判别分析、最大熵模型(Maxent)、支持向量机等。判别模型通常在分类和回归问题上表现更优,而生成模型则在序列建模和从缺失数据中恢复完整数据上具有优势。

参数模型(ParametricModel)是指模型由有限个确定的参数决定,如线性回归。非参数模型(Non-parametricModel)是指模型结构不依赖于有限个参数,模型复杂度可以随着数据的增加而增长,如K近邻、核方法、决策树等。参数模型的优点是可解释性强,但由于其结构固定,当问题复杂时容易产生欠拟合。非参数模型则更灵活,但往往需要更多数据,且可解释性较差。

线性模型是指模型对于任意的输入特征,其输出都是输入特征的线性组合,如线性回归、逻辑回归。非线性模型包括树模型(决策树、随机森林)、神经网络、核方法等,它们对于输入特征有非线性的处理能力,能够处理更复杂的问题。

机器学习系统的建立过程通常遵循以下流程:

特征工程是机器学习的重要环节。合适的数据表示对问题的解决至关重要,需要从原始数据中提取有价值的特征,包括特征构造、特征选择、特征降维等。这需要对问题有深入的领域理解。

根据问题的特点和目标,选择适当的机器学习算法或模型,并在训练数据上对模型参数进行学习和优化,得到处理新数据的模型。

在测试数据集上对模型的泛化性能进行评估,常用指标如精度、召回率、F1分数、AUC等。一般需要保留部分数据作为单独的测试集以此评估模型。

根据模型在测试集上的表现,可以通过调整算法的超参数、优化模型结构、添加正则化项等方法对模型进行改进。常用的技术包括网格搜索、交叉验证等。

对于性能良好的模型,就可以将其部署到实际的生产系统或软件产品中,用于解决实际问题,如视觉检测系统、自动驾驶、推荐系统等。

线性模型包括线性回归和逻辑回归,它们都属于经典但高效且可解释性强的算法。

线性回归用于连续值预测问题。其基本思想是,在已知的数据点(自变量x和因变量y)条件下,找到一条最优拟合直线(平面),使所有数据点到直线的残差平方和最小。通过简单的闭式解可以直接求解模型参数。广泛应用于房价预测、销量预测等场景。

这两种算法都是稳定且可解释的,但由于其线性本质,无法拟合复杂的问题。

决策树是一种基于树形结构的监督学习算法。它可以用于分类(ID3、C4.5)和回归(CART)问题。

决策树通过基于特征对数据集进行不断划分,每个节点的数据趋于同类。学习时不断选择最优分割特征,构建一棵最大限度区分样本的树。决策树具有可视化、可解释性强的优点,但也容易过拟合。

随机森林是将多个决策树结合的集成算法,通过随机选择特征并构建决策树集成,以期获得更佳的性能和泛化能力。它在分类和回归任务上都表现卓越,是非常实用的算法。

除了随机森林,Boosting技术如Adaboost、GBDT也可以构建树集成模型,通过迭代训练并组合多棵树,进一步提高预测性能。

树模型易于理解、训练高效,可以处理多种类型数据,且无需复杂的特征工程,是数据挖掘常用的工具。但单棵树易过拟合,且在处理高维数据时可能表现不佳。

核方法是一类重要的非线性机器学习算法,包括支持向量机(SVM)、高斯过程(GP)等。通过核技巧,可以学习复杂的、无限维的空间。

SVM是二分类问题中经典有影响力的算法。它试图在保证最小化经验风险的同时,也最大限度地提高了模型的综合泛化能力。SVM通过构建最优分离超平面来完成分类任务,分类效果通常优于传统神经网络和决策树。

SVM可通过软化核函数以学习非线性决策边界。常用的核函数有线性核、多项式核、高斯核等。除分类外,SVM还可以通过回归等价核技巧解决回归估计问题。

GP则是对函数空间进行概率非参数建模的有力工具,在小数据建模、曲线拟合、排序等应用有广泛应用。

核方法能够有效学习高维甚至无限维特征空间,但受限于选择合适核函数和参数调节。随着训练数据的增加,核方法的优势也将减小。

借鉴生物神经系统的设计理念,人工神经网络(ANN)以人工神经元为基本单位,构建层级化结构来对函数进行参数学习和模式识别。

最基本的前馈神经网络通过连结多层神经元,可以逼近任意复杂的非线性函数。多层感知器(MLP)就是一种典型的全连接前馈网络,通过反向传播算法对网络进行有监督训练。神经网络在处理复杂的模式时具有优势。

循环神经网络(RNN)则对序列数据建模有天然优势,可以有效捕捉序列中的长程依赖关系。基于RNN的LSTM、GRU等门控循环单元被广泛应用于自然语言处理等领域。

聚类是一种常见的无监督学习方法。通过聚类技术可以在无监督数据中发现潜在的数据组织模式。

K-Means是最经典的聚类算法。它通过不断迭代优化聚类中心的位置,将数据点分配到距离最近的那一个簇。K-Means算法简单高效,但需要预先指定期望的簇数K,且对异常值敏感。

基于密度的算法(如DBSCAN)通过分析数据点邻域的密集程度判定是否属于某个簇,能够很好地发现任意形状的簇。而基于模型的算法(如高斯混合模型GMM)则假设数据服从某种概率分布的混合,由此聚类。

层次聚类算法则通过计算距离将数据点两两归并到同一簇或将一个簇分裂为多个子簇。它能够发现数据的层次结构,但计算开销较大。

总的来说,不同的聚类算法适用于不同的场景和数据类型。聚类分析常应用于客户细分、基因聚类、异常检测等领域。

线性判别分析(LDA)则是一种有监督降维技术,其投影后的低维空间能最大化不同类别样本间的散布程度,从而达到更好的分类效果。

除了基于线性变换的传统方法,一些新兴技术如等向核方法(KernelPCA)、切向嵌入算法(LLE)、t-分布邻域嵌入(t-SNE)等,能够更好地发现数据的非线性低维结构。

值得一提的是,自编码器(AutoEncoder)这种无监督神经网络也可以用于学习数据的紧凑表示,是一种端到端的非线性降维技术。

降维技术在很多场合都有重要应用,如图像、文本等高维数据的压缩、可视化、提取特征等,能够提高机器学习算法的性能和运行效率。

5.1.1图像分类图像分类是计算机视觉中最基础和最具广泛应用价值的任务之一。常用的深度学习模型有AlexNet、VGGNet、GoogLeNet/Inception、ResNet等。以ImageNet图像识别挑战赛为例:

2015年提出的ResNet通过设计残差结构成功训练出了152层的超深网络,大幅提升了分类精度。如今在ImageNet数据集上的分类top-5错误率已经低于3%,接近人类水平。这些深度模型展现出了卓越的图像理解能力。

在实际应用中,如医学诊断的病理切片分类、无人驾驶中的交通标志识别、手写字符识别等,都可以建立在图像分类的基础之上。

5.1.2目标检测目标检测不仅需识别出图像中的目标类别,还需精确获取目标的位置信息(通常用边界框表示)。它是实现机器理解图像内容的关键一步。

主流的目标检测算法可分为基于候选区域的两阶段方法(R-CNN、FastR-CNN、FasterR-CNN)和基于密集预测的一阶段方法(YOLO、SSD)两种范式。

两阶段方法通过先生成候选区域框,再单独对每个区域进行目标分类,可以获得较高的检测精度。而一阶段方法则直接在输入图像上回归目标边界框的位置和类别,速度更快但检测精度相对略低。

除了精度和速度,实时性、鲁棒性等也是目标检测的重要考量因素。目标检测已广泛应用于无人驾驶环境感知、工业缺陷检测、视频监控分析等领域。

5.1.3其他计算机视觉应用机器学习在图像分割、3D重建、行为分析、视频描述生成等计算机视觉任务中也有重要应用。例如U-Net、MaskR-CNN等用于医学图像分割;基于3D卷积神经网络的人体姿态和手势估计;结合注意力模型对视频进行文字描述生成等。

传统的文本分类方法包括基于规则的方法、基于知识库的方法,以及将文本表示为单词袋或n-gram特征的统计学习方法(如朴素贝叶斯、SVM等)。这些方法对文本有一定理解能力,但依赖人工设计的特征提取和文本表示方式。

近年来,神经网络及词向量技术的发展使得深度学习模型(如CNN、RNN、BERT等)在文本分类任务上取得了卓越的性能表现。它们能够自动学习文本的分布式语义表示,减少了人工特征工程的需求。

5.2.2机器翻译机器翻译是自然语言处理中极具挑战的一个重点课题。通过建模源语言和目标语言之间的语义映射关系,实现跨语言的自动翻译。

统计机器翻译(SMT)方法是20世纪80年代兴起的主流技术,它以n-gram为特征,从大量已翻译的双语语料中训练翻译模型和语言模型,再解码得到翻译结果。这种方法易于并行计算,但也存在许多缺陷。

近年来,benefshortfromNMT方法借助序列到序列(Seq2Seq)模型、注意力机制等技术取得重大突破,将翻译问题建模为单个神经网络的最优化过程,有效避免了传统方法中人工特征设计和错误累积的问题。加之大规模并行训练,NMT系统的翻译质量已经超越了SMT系统。

5.2.3对话系统对话系统是自然语言处理的一个前沿应用领域,旨在使机器能够像人一样自然地与人进行对话交流。这是实现真正的人机交互的关键一步。

传统的基于规则和模板的对话系统受到严重的限制,无法做到多轮语境理解和生成自然的对话回复。而现代的对话系统普遍基于从大规模人机对话数据中训练的深度学习模型,如端到端的Seq2Seq模型、层次注意力模型和强化学习等技术。

对话系统的能力已经日益强大,但要真正像人一样自然对话仍面临很多挑战,如上下文理解、知识迁移、主动发起对话等,是自然语言处理和人工智能领域的重大课题。

5.3.1个性化推荐在信息过载的时代,推荐系统帮助用户高效发现感兴趣的内容和服务。个性化推荐是根据用户的历史行为习惯(如浏览、购买、评分记录)进行个性化建模,为不同用户推荐最符合其偏好的项目。

推荐系统常用的技术有:

深度学习的出现使推荐系统更加智能化,通过自动挖掘更高层次的用户和项目特征表示,克服了传统方法的数据稀疏和冷启动等问题。

以YouTube的视频推荐为例,它利用深度神经网络模型融合用户的历史观看记录、视频元数据、社交网络属性等多源异构数据,为每个用户生成个性化推荐列表,显著提高了视频被点击和持续观看的可能性。

5.3.2网页排名搜索引擎的网页排名是一个典型的推荐系统应用场景。传统的网页排名算法主要基于网页内容、超链接拓扑结构等特征,以PageRank、HITS等算法进行网页排序。

而如今的商业搜索引擎更多地采用基于机器学习的排名系统,通过挖掘超大规模的查询日志,构建涵盖上下文、语义、用户行为的特征工程,并使用LambdaRank、RankNet等学习到排序模型,为用户提供更加智能和个性化的搜索结果排名。

此外,知识图谱、个性化搜索等技术的引入,使搜索引擎更贴近用户真实需求,满足更加复杂的搜索场景,提供更优质的检索和排名服务。

5.4.1信用评分银行在向个人或企业发放贷款时,需要根据其信用状况进行风险评估,这就是信用评分的应用场景。通过机器学习算法对影响违约可能性的众多特征进行建模,可以自动化地生成信用分数。

传统的评分卡方法需要人工设计合理的评分规则和风险扣分策略。而机器学习则可以从历史数据中自动学习出影响违约的复杂变量关系,构建出更精准的评分模型。常用的方法包括逻辑回归、决策树、神经网络等。

以个人住房抵押贷款为例,评分模型会考虑申请人的工作收入、存款状况、之前的贷款和还款记录、社会关系网络等多方面因素,综合评定违约风险值。银行可根据这个分数决定是否批准贷款申请。

相比人工经验规则,机器学习模型能够更全面地rassess风险,减少审核过程的人为bias,加快审批流程,因此已成为当前主流的信用评分技术。

5.4.2欺诈检测诈骗行为无处不在,给企业和个人造成了巨大的经济损失。及时发现和防范欺诈,一直是金融风控的重中之重。

在信用卡欺诈、保险理赔欺诈、网络钓鱼等场景中,常用的欺诈检测手段包括:

部分金融机构还采用群体异常检测算法,将拥有相似特征的交易汇总成组,以发现有组织的欺诈行为。此外,将图神经网络等前沿技术应用于金融反欺诈的研究也在进行中。

通过机器学习和大数据分析手段,银行和金融机构可以较好地防范诈骗风险,提高交易的安全性。未来,欺诈检测系统还将更加智能和动态化。

机器学习理论和应用都仍在快速发展之中,面临诸多机遇与挑战。

大数据时代的到来为机器学习提供了源源不断的新鲜血液。无论是结构化数据还是非结构化数据,规模都在不断增长。同时,云计算、GPU等新型计算硬件的普及,也为训练复杂的深度模型提供了极大助力。可以预见,未来海量优质数据和强大的计算能力将进一步催化机器学习技术的发展。

目前训练复杂模型在算力、数据、模型选择等方面存在较高的门槛。通过自动机器学习、模型压缩、迁移学习等技术的发展,未来训练和部署机器学习模型的成本将大幅降低,并逐渐实现模型在不同领域的快速迁移。从而推动机器学习在更多场景的普及应用。

随着人工智能日渐强大,也出现了一些潜在的安全和伦理挑战,如算法公平性、隐私保护、对抗性攻击等。如何规范人工智能的发展,平衡利弊,仍是一个严峻的课题。相信未来会有更多的法律法规对人工智能算法进行监管。

THE END
1.人工智能与教育:实现个性化教学的未来本文探讨了人工智能如何与教育相结合,通过机器学习、自然语言处理等技术实现个性化教学,介绍了核心算法原理、操作步骤和数学模型,如逻辑回归、聚类和深度学习,并展望了未来发展趋势和面临的挑战。 摘要由CSDN通过智能技术生成 1.背景介绍 人工智能(Artificial Intelligence,AI)是计算机科学的一个分支,研究如何让计算机模拟人https://blog.csdn.net/universsky2015/article/details/135810735
2.基于知识图谱和图嵌入的个性化学习资源推荐针对现有方法存在的可解释性差、推荐效率和准确度不足等问题, 提出了一种基于知识图谱和图嵌入的个性化学习资源推荐方法, 它基于在线学习通用本体模型构建在线学习环境知识图谱, 利用图嵌入算法对知识图谱进行训练, 以优化学习资源推荐中的图计算效率. 基于学习者的学习风格特征进行聚类来优化学习者的资源兴趣度, 以https://c-s-a.org.cn/html/2023/5/9068.html
3.人工智能技术赋能个性化学习:意蕴,机制与路径从学习者基础数据,智能决 策与个性服务,学习模型建构的动态层级 关系看,人工智能技术赋能个性化学习的实践路径为:以数据挖 掘精确绘制学习者个体数字 画像,引导量化自我与量化学习;以人工智能的推荐算法与学习适应管理系统 ,实现智能决策与个性化服务 ;通过机器学习构建深度学习的人本生态系统 ,促进学习从浅表走向纵深 http://gxss.magtech.com.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=2425
4.当传统联邦学习面临异构性挑战,不妨尝试这些个性化联邦学习算法第二篇文章重点解决模型异构性的问题[7],作者提出了一种引入 Moreau Envelopes 作为客户机正则化损失函数的个性化联邦学习算法(pFedMe),该算法有助于将个性化模型优化与全局模型学习分离开来。最后,第三篇文章提出了一个协同云边缘框架 PerFit,用于个性化联邦学习,从整体上缓解物联网应用中固有的设备异构性、数据异构https://www.jiqizhixin.com/articles/2020-09-23-7
5.学生的个性化学习研究,为差异化教学提供新思路!RAD极客会学生的个性化学习研究,为差异化教学提供新思路! 摘要 在数字化环境中,学习是对信息进行收集、汇聚、存储、共享和创造的过程,不仅涉及个体学习行为,也涉及群体行为,影响着个体知识建构过程。大数据背景下,基于AprioriAll算法,挖掘分析相同或相近学习偏好、知识水平的同一簇群体学习行为轨迹,并以学习者特征与学习对象媒体类型https://www.shangyexinzhi.com/article/4436551.html
6.有哪些常用的个性化推荐算法–PingCode个性化推荐算法主要用于分析用户行为、偏好和需求、以提供定制化的产品或服务推荐。最常用的个性化推荐算法包括协同过滤(Collaborative Filtering)、内容推荐(Content-Based Filtering)、混合推荐(Hybrid Recommender Systems)、矩阵分解(Matrix Factorization)、基于深度学习的推荐算法(Deep Learning-Based Recommender Systems)等。https://docs.pingcode.com/ask/201524.html
7.推荐算法学习笔记(一)——推荐算法(RecommendedAlgorithms)概述Youtube 基于深度学习的推荐算法: 论文:[《DeepNeuralNetworksforYouTubeRecommendations》](https://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/45530.pdf)论文理解:-### 实现code: 2 非个性化推荐 2.1 基于规则的推荐 思想:https://www.jianshu.com/p/1464eab67711
8.人工智能教育应用的伦理风险及其应对研究摘要:人工智能教育应用的伦理议题主要包括教育大数据引发的隐私安全问题、智能机器对人类教师职业造成的威胁、个性化学习算法存在的伦理冲突、教育领域数字鸿沟带来的伦理危机、智能教育发展对社会美德的冲击等多方面的伦理问题。究其成因,与技术主体的职业素养“失守”、伦理自主性受限,用户技术崇拜、能动性丧失以及社会层面https://www.fx361.com/page/2022/0311/10128652.shtml
9.PerFedAvg:联邦个性化元学习腾讯云开发者社区使用元学习和多任务学习来实现个性化并不限于MAML框架,还考虑了一个训练单个全局模型和局部模型的框架,为每个用户提供个性化的解决方案;以及另一论文作者提出了一种自适应联邦学习算法,该算法学习局部和全局模型的混合作为个性化模型。 ▊通过模型不可知论的元学习进行个性化联邦学习 https://cloud.tencent.com/developer/article/1984162
10.两位数加减两位数的教学反思(精选41篇)2、尊重学生个性化学习,体现算法多样化 在学生运用两位数加两位数的口算解决实际问题时,由于学生生活背景、自身思维方式的不同,口算的方法也必然多样化。在实际教学中,我就尊重学生,承认学生的个体差异,使学生在交流中体验算法多样化,并努力使学生内化、完善自己的计算方法。如在解决乘船问题的过程中,当学生列出算式23+https://www.jy135.com/jiaoxuefansi/904869.html
11.算法工程师是什么职位字节跳动2024年算法工程师前景待遇深度学习算法 算法设计 数据开发 Spark Hadoop 自然语言处理 机器学习算法 强化学习 职位描述 1、参与字节用户增长个性化激励中台的算法策略研发,支持各个海外产品的激励策略; 2、使用因果推断、强化学习、运筹优化等技术提供个性化数值策略,以优化留存、总成本、净利润等核心指标; https://www.zhipin.com/job_detail/7c6203a17dc348ea1nJz0tS6GVNY.html
12.数据治理新要求2018 年初加入度小满金融开始组建数据智能部,从0到1建设度小满金融的智能引擎的核心算法,深耕计算机视觉、自然语言处理、图模型、机器学习、因果推断等技术能力,多篇文章被EMNLP、ACL、CIKM等国际顶会收录,“智能化征信解读中台”工程荣获吴文俊人工智能科技进步奖。相关技术广泛应用于度小满营销、经营、风控、反欺诈全流程https://hub.baai.ac.cn/view/32749
13.晓果智学——中小学智能个性化学习领导品牌提分利器智能教育自学习报告 作业、小测试、考试行为结果数据全量收集 学生·个性化学习 精准推送 作业数据结合推荐算法,定位薄弱点,自动推送复习题 错题再练 自动添加错题至错题本,有效补全知识漏洞 学生·个性化学习 进度追踪 随时查看孩子多维度学习报告,获得孩子的学习进度 https://www.xiaoguoai.cn/
14.两位数加减两位数的教学反思范文(精选20篇)学习的最好的刺激,就是对学习材料的兴趣。本节课通过让学生感受春天,提供了乘船去鸟岛春游的生活情境,同时充分利用情境,引导学生积极思考,让学生发现问题,提出问题,激发学生的学习兴趣,让学生体验到生活与数学的密切联系,激起学生急于解决问题的欲望。 2、尊重学生个性化学习,体现算法多样化 https://www.ruiwen.com/jiaoxuefansi/6345473.html
15.智能降管理——开启降领域新时代瞪羚云长城战略咨询方式:依托机器学习算法及其他技术建立糖尿病精准模型。 案例:健安华夏建立了基于血糖预测/营养建议的精确糖尿病模型,可预测血糖数据及影响因素,提供个性化控糖方案,实现对糖尿病患者持续、高效管理。 (三)数据库技术与健康要素检测(人工智能+基因型+健康管理) https://www.chinagazelle.cn/news/detail/45e80a28ed074d97b8a56b4ffba42e6d
16.谢浩然等人工智能赋能个性化学习:E同时,传统的协同过滤算法亦采用浅层模型因而无法学习到用户和项目的深层次特征。基于本体的推荐系统用于克服冷启动问题并提高推荐的个性化。基于社交网络的推荐系统的算法机制是基于社交网站上用户与好友之间的信任度而进行的推荐决策。随着数据获取技术的发展壮大,互联网中蕴含的丰富的用户行为及个性化需求信息的可获取性不https://aidc.shisu.edu.cn/66/27/c11041a157223/page.htm
17.人工智能教育博士课题.pdf特征和需求进行个性化教学的功能。研究内容包括: 1.个性化学习算法的设计与优化:针对教育领域的特性,设计并优 化适合于该领域的个性化学习算法,提高学习者的学习效率和学习效 果。 2.学习路径规划:通过分析学习者的特征和需求,为其规划合适的 学习路径,实现个性化教学。 3.学习效果评估:通过机器学习和数据挖掘等技术https://max.book118.com/html/2024/0111/8137110021006025.shtm
18.构建个性化学习之路:开源网校系统的教育资源分配策略为了更高效地进行资源分配,系统中的内容通常会被打上各种标签,如难度级别、知识点、题型等。结合学习者的画像,智能推荐算法可以在海量的学习资源中快速匹配适合当前学生的学习材料,实现资源的个性化分配。 4、自适应学习路径的生成 除了单次的资源推荐外,系统还能够根据学生的长期表现,动态调整其学习路径。这意味着如果https://www.xiaoe-tech.com/extendRead/2683.html
19.隐私计算中的联邦学习联邦学习正在应用到更多类型的数据和问题领域,甚至已经被认为是隐私计算的重要方式,即面向AI的隐私保护手段,个人精力所限,本文没有涉及联邦学习中个性化、健壮性、公平性和系统实现的挑战。关于联邦学习的实践,TensorFlow Federated 或许是一个不错的起点。 https://www.51cto.com/article/718508.html
20.3分钟轻松了解个性化推荐算法推荐这种体验除了电商网站,还有新闻推荐、电台音乐推荐、搜索相关内容及广告推荐,基于数据的个性化推荐也越来越普遍了。今天就针对场景来说说这些不同的个性化推荐算法吧。 说个性化之前,先提一下非个性化。 非个性化的推荐也是很常见的,毕竟人嘛都有从众心理,总想知道大家都在看什么。非个性化推荐的方式主要就是以比较https://www.cda.cn/view/16737.html
21.智能+”校园:教育信息化2.0视域下的学校发展新样态综合考虑当前的技术成熟度条件及校园具体业务需求模型,我们认为,“智能+”校园有人工智能精准教学、人工智能安保、人工智能学习工具、适应性学习环境、人工智能辅助决策、人工智能辅助评估、人工智能心理服务与人工智能沟通等八大应用场景。每个应用场景又对应具体的AI服务,在AI技术和AI数据的支撑下,实现对师生个性化需求的智http://tx.nxeduyun.com/index.php?r=space/school/theme/content/view&id=1048892
22.人工智能能给APP软件开发带来哪些改变?3. 机器学习优化用户体验: 机器学习算法在APP开发中广泛应用于优化用户体验。通过学习用户行为和反馈,APP可以不断调整界面布局、推荐内容、推送通知等,以满足用户需求。这种个性化的优化可以提高用户的满意度,增加用户黏性,同时提高APP的活跃度。 4. 图像识别和增强现实: http://www.apppark.cn/t-50324.html
23.科学网—[转载]联邦学习算法综述摘要:近年来,联邦学习作为解决数据孤岛问题的技术被广泛关注,已经开始被应用于金融、医疗健康以及智慧城市等领域。从3个层面系统阐述联邦学习算法。首先通过联邦学习的定义、架构、分类以及与传统分布式学习的对比来阐述联邦学习的概念;然后基于机器学习和深度学习对目前各类联邦学习算法进行分类比较和深入分析;最后分别从通信https://blog.sciencenet.cn/blog-3472670-1280769.html