致敬经典:《生物信息学》(第二版)出版!高通量算法组学转录组

《生物信息学》(即网络版备课笔记《生物信息学札记》第四版)自2017年出版以来,受到广大读者的喜爱,反响热烈,编者深感欣慰。华中科技大学一位同行告诉我,《生物信息学札记》当年对他影响很大,其中动态规划算法就是读了札记后才看懂的。

本书被不少院校和研究机构作为教学用书,例如,中国科学院遗传与发育生物学研究所将本书列为研究生课程的主要参考书,华中农业大学信息学院将本书作为生物信息学专业本科生的主要教材,等等。这使我倍感压力,也给了我更大的动力来修订好这本教材。生物信息学是一个快速发展的学科,技术变革很快,加之上一版中存在一些疏漏和不足(感谢许多同行和读者给我的来信),深感有些内容已惨不忍睹,亟待更新。

第二版主要在以下4个方面进行了修改和完善:

1

调整了全书组织框架,全书现共15章、3个附录。由于高通量测序数据已成为常态数据,是目前生物信息学分析的主体,已没有必要将高通量数据分析单独成篇进行介绍。同时,将第一版“生物信息学外延与交叉篇”中有关交叉学科整合到生物信息学学科中的部分纳入整个生物信息学框架内集中介绍更为合适;第一版“生物信息学资源与实践篇”各章内容(实验除外)在第二版中均列为附录内容。这样的调整使全书逻辑更加清楚,内容更加紧凑,便于阅读。

2

3

为了紧跟生物信息学应用前沿领域,增设“新类型组学数据分析与利用”一章,专门介绍三维基因组、单细胞组学等新领域中的生物信息学分析方法前沿。

4

樊龙江

2021年2月6日

于浙江大学紫金港校区启真湖畔

致敬经典

本书讲述的部分人物

编辑推荐

生物信息学是一门年轻而迅猛发展的学科,现已发展成为生命科学极具吸引力的重要前沿领域。20世纪末,我国生物信息学处于起步阶段,学习资料很少,浙江大学樊龙江教授整理了“生物信息学”课程的备课笔记,取名《生物信息学札记》,放在实验室主页上供读者参考。由于网络传播的作用,该札记成为许多生物信息学初学者的必读材料,在国内形成一定影响。《生物信息学》(第二版)正是在该札记的框架基础上,结合樊龙江教授多年的教学心得和研究成果,补充大量新材料编写而成。

本书内容全面、体系完整,既包括生物信息学统计与算法基础和计算机基础等基本知识,也涵盖当下火热的组学大数据及其分析等前沿内容,书中配有丰富的生物信息学实际应用案例,还可以扫二维码查看精美的英文彩色插图和大量知识拓展材料,并可在主编实验室主页下载本书教学课件、教学大纲和思政教学切入点等材料。

可以说,《《生物信息学》(第二版)是一本理论联系实际的教材,更是一部致敬经典、具有人文历史情怀的教科书,值得推荐!

主编简介:

樊龙江,浙江大学生物信息学研究所执行所长,IBM生物计算实验室主任,生物信息学专业和作物遗传育种专业博导,宝钢优秀教师奖获得者,浙江省“万人计划”杰出人才,教育部新世纪优秀人才。主要研究领域包括植物基因组与进化、生物信息学算法与工具、植物比较医学与健康等。承担国家自然科学基金重大研究计划项目等国家级课题10余项,在NatureEcology&Evolution、GenomeBiology、PNAS、Bioinformatics等重要刊物上发表论文100余篇。主编规划教材《生物信息学》和《植物基因组学》。

正文抢先看

数字资源展示

本文摘编自《生物信息学(第二版)》一书,内容有删减,标题为编者所加。

THE END
1.算法笔记(三)算法学习技巧前言 从开始学习算法已经有两三个多月的时间了,从简单到深入层次展开,层层优化,对算法的理解也在逐渐加深,不在那么片面,虽然现在还是片面一些,对它的了解也仅仅知道冰山一角,还有很多的内容需要我们去学习去挖掘。思路 在学习前我们https://www.code456.com/article/3598351.html
2.如何有效学习算法?算法学习学习算法需要系统性的方法和实践,以下是一些有效的学习步骤和资源建议 基础知识学习: 数学基础:掌握离散数学、概率论、统计学等基础知识 编程基础:熟练掌握至少一种编程语言,如Python、C++、Java等 数据结构与算法基础: 数据结构:学习数组、链表、栈、队列、树、图等数据结构 https://blog.csdn.net/qq_49548132/article/details/140109291
3.2020年深度学习算法工程师面经(微软阿里商汤滴滴华为3.10 深度神经网络和深度学习区别 机器学习是很多种方法和模型的总称。 神经网络是一种机器学习模型,可以说是目前最火的一种。 深度神经网络就是层数比较多的神经网络。 深度学习就是使用了深度神经网络的机器学习。 3.11 深度学习为什么比机器学习好 3.12 train,val,test相关 https://maimai.cn/article/detail?fid=1514590373&efid=Oph3033j5Qs70xHZdz0sGA
4.不会算法?大厂可不是那么好进的!第三部分,这部分是你学习的重点,也就是用算法思考问题的逻辑和程序设计方法。 第四部分,侧重在 BAT 高频面试真题详解。 第五部分,面试现场。很多工程师有个共性问题,那就是明明有能力,却说不出来,表现得就像是个初学者一样。 其中,最最最重要的就是刷题了,百炼才能成钢!!(重要的事儿多说几遍。) https://www.jianshu.com/p/2aea4e93fa4f
5.如何成为一名数据科学家?但是掌握一门专业知识最好的方法还是系统性的阅读书籍。如果想进一步了解数据科学家的工作或者如何提升自己的数据科学技能,我推荐以下这几本书籍:《数据天才》、《敏捷数据科学》、《数据科学家养成手册》、《Python大战机器学习》 评论 43赞 踩 在外界看来,「大数据」和「数据科学」这样的词看起来复杂又神秘。数据科学https://www.360doc.cn/mip/730726464.html
6.北师大版三年级数学《植树》问题教学设计(精选12篇)2.通过老师用画线段的方法模拟种树情境理解解决问题的方法,再采用合作学习的方式利用学具摆、数、画等方法,进一步明确棵数与间隔数之间的规律。 3.学习植树问题在生活中的运用。 教具:课件一套学具9套自学提示卡一张。 预设教学流程: 一、创设情境生成学习目标 https://www.ruiwen.com/jiaoxuesheji/4156829.html
7.青少年网络信息安全知识竞赛题库(中职(学)版)网络安全121. 下面属于对称算法的是 ( B ) A. 数字签名 B. 序列算法 C. RSA 算法 D. 数字水印 122. PGP 加密技术是一个基于 体系的邮件加密软件。 ( A ) A. RSA 公钥加密 B. DES 对称密钥 C. MD5 数字签名 D. MD5 加密 123. 为了防御网络监听,最常用的方法是 ( B ) https://www.wxjsxy.com/xxglzx/wlaq/content_11087
8.学习SEO优化最常见的100个SEO问答黑帽seo就是作弊的意思,黑帽seo手法不符合主流搜索引擎发行方针规定,黑帽SEO获利主要的特点就是短平快,为了短期内的利益而采用的作弊方法,同时随时因为搜索引擎算法的改变而面临惩罚(具体可查看马海祥博客《什么是黑帽SEO》的相关介绍)。 4、新人如何去学习seo优化? https://www.niaogebiji.com/article-32844-1.html
9.《光谱学与光谱分析》2022年,第42卷,第02期实验表明,采用PLS算法建立的TOC紫外-可见光谱定量分析模型具有较好的分析精度和鲁棒性,分组实验和不同仪器状态交叉实验中预测浓度的MAPE均不超过3.82%,优于常规的间接推算法。此外,建立的光谱定量分析模型不依赖COD与TOC间的推算关系,因此在水环境变化时较常规推算方法具有更好的适应能力。最后,PLS算法建模过程简单,运算http://www.sinospectroscopy.org.cn/readnews.php?nid=97028
10.机器学习(二)之无监督学习:数据变换聚类分析虽fit_transform不一定对所有模型都更加高效,但在尝试变换训练集时,使用这一方法仍然是很好的做法。 2.3 降维、特征提取与流形学习 数据变换最常见的目的就是可视化、压缩数据,以及寻找信息量更大的数据表示以用于进一步的处理。常见的算法有主成分分析、非负矩阵分解、t-SNE,前者通常用于特征提取,后者通常用于二维散点https://www.flyai.com/article/516
11.统计学习方法(豆瓣)详细介绍支持向量机、Boosting、最大熵、条件随机场等十个统计学习方法。 统计学习方法的创作者· ··· 李航作者 作者简介· ··· 李航 日本京都大学电气工程系毕业,日本东京大学计算机科学博士。曾任职于日本NEC公司中央研究所,微软亚洲研究院高级研究员及主任研究员,现任华为诺亚方舟实验室首席科学家。北京大学、https://book.douban.com/subject/10590856/
12.基于深度强化学习的水面无人艇路径跟踪方法然而,上述现有方法不具备自适应能力,当水面环境参数发生变化时,不仅需要复杂的参数整定过程,还难以实际保证路径跟踪控制效果的稳定,导致无人艇路径跟踪控制的稳定性不好。同时,现有技术还提出了基于最优控制和反馈线性化的自抗扰控制方法,这类算法通过环境和无人艇动力学建立准确的模型才能获得较好的控制精度,但同样https://www.xjishu.com/zhuanli/54/202210772926.html/
13.科学网—[转载]进化集成学习算法综述随着集成学习处理问题的维度、复杂度的增加(如大数据、云计算和深度网络集成等)以及进化算法的突破和发展(如多模态优化、大规模优化、超多目标优化等),进化集成学习算法具有越来越广阔的应用前景。 在当前的研究方法中,一些研究分别对基于分类、回归和聚类问题的集成学习方法进行了综述。尽管这些研究对进化集成学习算法https://wap.sciencenet.cn/blog-951291-1312816.html
14.力扣(LeetCode)全球极客挚爱的技术成长平台算法作为面试中非常核心的一环,攻克其高效的方法为先熟练掌握数据结构,再系统学习算法。本文会详细介绍面试中经常用到的数据结构数组,字符串,链表,哈希表,栈,队列,堆,优先队列,树,以及图的使用、底层原理以及各个操作的性 967 103 3365 TaylorSwift?2 小时前https://leetcode-cn.com/
15.航班预计到港时间的精细管理基于XGBoost机器学习算法的EXIT预测方法是一种动态的预测方法,能够根据机场场面运行条件的变化进行实时的准确预测,其难点在于需要大量的、实时的、准确的数据以及优秀的算法模型,不过这是一种值得深入研究的一种方法。 五、结论与展望 丰田公司在20世纪60年代提出了“准时生产(Just In Time,简称JIT)”概念,其核心思想就https://news.carnoc.com/list/616/616735.html
16.机器学习常用的十大算法人工智能8)对于异常点的容错能力好,健壮性高。 决策树算法的缺点: 1)决策树算法非常容易过拟合,导致泛化能力不强。可以通过设置节点最少样本数量和限制决策树深度来改进。 2)决策树会因为样本发生一点点的改动,就会导致树结构的剧烈改变。这个可以通过集成学习之类的方法解决。 https://www.elecfans.com/rengongzhineng/2270100.html
17.简单易学的机器学习算法——集成方法(EnsembleMethod)在现实世界的生活中,常常会因为“集体智慧”使得问题被很容易解决,那么问题来了,在机器学习问题中,对于一个复杂的任务来说,能否将很多的机器学习算法组合在一起,这样计算出来的结果会不会比使用单一的算法性能更好?这样的思路就是集成学习方法。 集成学习方法是指组合多个模型,以获得更好的效果,使集成的模型具有更https://cloud.tencent.com/developer/article/1390381
18.4种方法教你利用Python发现数据的规律python分组和聚合:将数据按照某个变量进行分组,然后对每组数据进行聚合(如计算平均值、中位数、最大值、最小值等),以便找到变量之间的相关性和趋势。 机器学习算法:使用机器学习算法(如线性回归、决策树、聚类等)对数据进行建模和预测,以便更深入地了解数据的规律和趋势。 综合使用以上方法可以更全面地了解数据的规律,以便https://www.jb51.net/article/278111.htm
19.字节跳动面试全经历,大佬的世界原来是这个样子!51CTO博客A:项目是最好的学习方法,现学现用是最有力的驱动,效果比体系化的学习之后再去做项目学的快。然后数学功底也很重要,最近有在看吴军博士的《数学之美》,就是把数学的思想抽象出来应用的图像上,对于图像处理来说可能数学的抽象能力也非常重要。 反问环节 https://blog.51cto.com/u_14209518/5344067
20.轻松看懂机器学习十大常用算法西南石油大学轻松看懂机器学习十大常用算法 通过本篇文章大家可以对ML的常用算法形成常识性的认识。没有代码,没有复杂的理论推导,仅是图解,介绍这些算法是什么以及如何应用(例子主要是分类问题)。以后有机会再对单个算法做深入地解析。 一、决策树 二、随机森林算法 三、逻辑回归https://www.swpu.edu.cn/eelab/info/1090/2296.htm
21.《常用算法之智能计算(三)》:机器学习计算在给出机器学习计算各种算法之前,最好是先研究一下什么是机器学习和如何对机器学习进行分类,才能更好的理解和掌握一些具体的机器学习算法并将其用于实际问题的计算和处理。 学习是人类具有的一种重要智能行为,但究竟什么是学习,长期以来却众说纷纭。社会学家、逻辑学家和心理学家都各有自己不同的看法和说法。比如,http://www.kepu.net/blog/zhangjianzhong/201903/t20190327_475625.html