易斌教授:AI和围术期大数据驱动下的麻醉管理围术期麻醉学麻醉教授患者

麻醉多目标优化是必然趋势:借助算法可以完成RCT无法应用的研究,建议尽早介入。

易斌教授

陆军军医大学第一附属医院

(西南医院)

一、背景

本团队AI和围术期大数据研究成果:

1.围术期大数据研究团队及成果

于2018年和中科院重庆绿色智能研究院建立合作,并受邀在全国和多个省市专题汇报30余次。目前已经形成多项围术期危重症的预警模型和干预知识图谱,已申报发明专利13项,获批4项。

发表了中华麻醉学杂志第一篇AI专家论坛(2022年)、第一篇AI的述评(2019年)、第一篇AI的论著;论著并代表中华麻醉学(唯一)入选2020年中华系列杂志百篇优秀论文、中国科协优秀论文;《围术期大数据的治理和算法应用》通过人民卫生出版社的选题单。AI算法方面SCI论著10余篇。

3.研发围术期危重症预测和干预提示系统

(一种新监护模式)世界法律日

(1)手术间工作单元

◆患者基本信息展示、生理参数监测、指征录入

◆并发症风险计算及预警、风险评估、决策支持

(2)指挥中心工作站

◆患者基本信息展示、生理参数监测、实时手术视频展示

◆手术流程显示、手术室列表展示

◆患者病历、检验信息、检查信息

◆知识图谱

该系统目前已经获“中华人民共和国医疗器械注册证”、“计算机软件著作权登记证书”和“软件产品证书”,并通过了严格的第三方测试,保障了场景数据、网络、系统安全,入选重庆市卫健委数字健康应用场景。

二、围术期大数据驱动下的麻醉管理研究势在必行

1.围术期大数据驱动下的麻醉管理研究势在必行的原因包括如下三方面:

(1)外科管理开始高度重视多目标优化;麻醉学管理需要围术期大数据支撑,才能有效的实现多目标优化;

(2)围术期数据的特点/问题与医学其他领域很大区别(特殊性):研究难度明显大于医学其他领域,更加需要早期介入,等待意味差距加大;

(3)围术期麻醉管理的动态、持续做正确决策很难、很累(围术期大数据基础上的强化学习有望实现智能化麻醉管理医疗决策支持)。

多目标优化包括循环管理、容量管理、麻醉深度管理、手术方式、基础疾病管理、疼痛管理、心理管理等;

单目标的优化,可能有不可控的结果(例如某项研究以阿片类药物为目标,对疼痛满意度提高6%,然而术后安全事件增加223%)。

3.需要注意目前ERAS研究的重要瓶颈

多目标优化研究可能有不同的结果;各ERAS措施之间,可能存在明显相互影响;目前ERAS的研究均是针对单个影响因素RCT研究,可能会产生合成谬误。

重要词汇:合成谬误(FallacyofComposition)是由萨缪尔森提出来的。对局部说来是对的东西,仅仅由于它对局部而言是对的,便说它对总体而言也必然是对的,是一种谬误。在经济学领域中,十分肯定的是:微观上而言是对的东西,在宏观上并不总是对的;反之,在宏观上是对的东西,在微观上可能是十分错误的。

ERAS措施太多,有过度嫌疑:明显加重医护工作量、浪费资源;期望去除“无效”部分;

ERAS的RCT研究都是单目标优化:传统RCT研究无法完成多目标优化(分组问题),需要新的研究方法;

4.围术期大数据研究的关键点

(1)迄今无公开的多中心围术期大数据集

▲围术期大数据采集(多维度生命体征大数据):时序同步处理方法、采样频率优化方法;

▲围术期大数据高维度问题及其处理;

▲围术期大数据高噪音问题及其处理;

▲围术期大数据的数据缺失问题及其处理;

▲围术期大数据多指标非同量纲问题。

(2)算法研究已进入瓶颈

▲围术期大数据核心指标分析(因果知识体系构建、候选指标分析方法);

▲围术期大数据算法应用和优化;

(3)标准化流程

▲基于围术期大数据的预测类问题的算法应用

▲基于围术期大数据的分类、诊断和辅助诊断类问题的算法应用

▲基于围术期大数据的辅助医疗决策支持类问题的算法应用

▲基于围术期大数据的医疗成本分析,效果评价类问题的算法应用

三、麻醉学围术期数据相对于其他学科疾病数据,其治理存在如下几方面难度

难题一:麻醉学围术期数据的结局并非最终临床结局

■麻醉医师最多只能关心围术期,对患者1个月/3个月或者远期预后并不关心;

■影响竞争力:被其他学科专家认为在疾病诊治全过程中的作用较弱。

难题二:麻醉学围术期数据呈现高维度(影响因素):清洗、预处理难度大

■算法对围术期高维度数据需要适应(算法创新);

■医学图像和视频数据的影响少(适用于影像学、肿瘤、眼科等);图像的形状、颜色、深度等;

■围术期数据维度:至少数十种(如图像不会受到患者心情、体温等影响);

■往往需要进行降维(Boruta,PCA,t-SNE等)否则计算量太大;

■高维度数据导致应用难,与AI优势应用学科差距显著:AI优势学科包括影像学、肿瘤、眼科、外科决策、慢病、重症医学等,而麻醉学尚无CNS和重要子刊上发表论著。

难题三:麻醉学围术期数据不仅维度高,而且大量噪音混杂在其中

▲围术期用药(干预)记录的及时性和准确性堪忧,明显影响数据质量;

▲占据团队90%的工作量:数据清洗和预处理难度大;

◇指标多且非同量纲(不同指标规格不同,难以比较,需要无量纲化)

◇数据缺失明显(boosting算法占优)

◇信息利用度低下、特征缺失等

▲针对数据算法的AI研究团队不看好麻醉学:高质量数据集难度大。

难题四:麻醉学数据明显影响处理工具及方法的鲁棒性(数据的稳定性和代表性)

▲人工智能技术普遍面临鲁棒性的问题:麻醉学数据的特点使其更加明显;

▲各团队间存在显著的差异:单中心甚至多中心的数据所构建模型难以应用推广;甚至团队内部分干预措施使用/记录发生微小改变亦会导致不同结果;

▲(不同团队的围术期数据:除了地域、人种等区别外,还受到围术期外科医师用药习惯、病人的不同情绪、麻醉医师的管理习惯(积极与保守)等诸多区别;

围术期数据“鲁棒性”的影响

而一家医院建模,另外医院作为外部验证的研究惨不忍睹,其灵敏度、精确率、召回率、AUC等指标差距甚大,数据离散度较大。

解决鲁棒性的最有效方法是多中心的融合数据联盟

多中心数据建模的推广性显著高于单中心;

多中心合作研究核心问题是解决数据壁垒;

多团队的联合攻关:互为研究参与者,从合作方拿走二级数据(而非原始数据,可以有效避免数据壁垒问题)。

可以预计AI的研究很快会代替RCT研究的同时,单中心的AI研究将被淘汰(内卷加深),而多中心/大样本建模、单/多中心验证是未来方向。多中心/大样本的模型外部验证明显好于单中心模型,目前本团队正在进行的一项利用术前指标预测术后呼吸并发症的研究,涉及的三家医院分别进行了单中心外部验证,效果较好,提示模型的“泛化性”良好。

四、在围术期大数据算法应用和研究中,很多团队遇到瓶颈

▲基于围术期大数据的算法概述及分类

☆传统机器学习的算法:k近邻、线性模型、决策树、朴素贝叶斯、逻辑回归、支持向量机以及集成学习等;

☆深度神经网络算法:前馈神经网络、卷积神经网路、递归神经网络等;

▲算法研究:算法创新+算法策略优化

▲围术期大数据算法创新(集成创新)

▲围术期大数据算法策略优化方法

☆梯度下降法(最简单、最常用)

随机梯度下降

小批量梯度下降

提前停止

☆牛顿法和拟牛顿法

☆共轭梯度法

☆启发优化法

在围术期大数据算法应用和研究中,研究团队的持续性/生命力非常重要,研究亚领域往往周期短(数据研究→算法研究),优势学科包括影像学、肿瘤、眼科等基本上都是算法研究等。

1.围术期大数据:预警类的研究

围术期大数据的特点是需要算法研究,算法应用效果较差的时候,可以进行算法研究提升效果,算法集成创新+梯度下降法。通过在线工具协助麻醉管理,可提高命中率。

王天龙教授、马大青教授、王东信教授等众多团队一致认为风险评估喝围术期风险控制可能是治疗术后谵妄的最有效方法,在这里我们介绍我们团队依据多中心数据集构建的老年PND发生的预警模型及其在线工具:

■老年患者术后PND发生的预警明显的构建和初步验证研究

■多中心:共纳入49768例全麻患者,在排除pre-existingNCD后,最终纳入1051例数据(阳性242例,阴性809例)进行分析

■经过在线工具设计,可用于围术期术前及术中的动态评估

2.围术期大数据预警类研究的瓶颈

目前基本上都是预警类研究,高质量数据集支撑下单用深度学习可以有效预测围术期各种危重症的发生,然而技术逐渐被掌握,基于深度学习的预警类研究越来越内卷:一投就中,一投就拒。

增加投稿命中率有如下建议:

研究目的的思路和内容的一致性;

模型的应用价值;

数据质量、代表性、样本量;

预测建模方法了解度;

推广应用性(解决鲁棒性)

3.围术期大数据基础上的强化学习有望实现麻醉管理医疗决策支持

现状:做正确的医疗决策难,围术期麻醉管理中动态,持续做正确决策更难。

ERAS措施太多,有过度嫌疑:明显加重医护工作量、浪费资源;

ERAS与个体化:不同的手术可能需要不同的措施;

均是单个措施的研究,多措施复合可能有不同的结果;

各措施之间,可能存在明显相互影响;

一些RCT研究证明无效简单措施,可能在多措施中扮演重要角色。

4.强化学习

强化学习常用贝叶斯网络(Bayesiannetworks,BNs)和马尔可夫决策过程(MDP)建模和解决,其中BNs主要用于处理简单低维的问题如病人情况良好的简单手术类型,而MDP的高维复杂数据有先天优势,可用于复杂手术类型和危重患者。

五、在围术期管理医疗决策中的应用前景

1.应用一:可以实现全部参数实时动态的闭环,为麻醉用药机器人提供前期基础:目前的闭环BIS+TCI麻醉管理过于粗,现成的成熟技术、临床病例数据噪音过大。

2.应用二:开辟ERAS研究新领域

3.应用三:重症患者围术期的围术期管理

这是目前的攻关重点,借鉴ICU和慢病领域,其他应用包括多模式镇痛的个体化组合推荐研究等。斯坦福大学管理科学与工程系和医学健康研究与政策学系基于个体患者的特征建立了MDP,以患者利益最大化和风险最小化寻找优化策略实现个性化的高血压治疗。

7个状态:4种药物分别是血管紧张素转换酶(ACE)抑制剂、血管紧张素受体阻滞剂(ARB)、beta-阻滞剂、钙通道阻滞剂(CCB)和噻嗪类利尿剂JNC8.EighthJointNationalCommittee(可以看成指南推荐)

我们团队关于术后脓毒症患者预防性使用肝素的最优方案研究

研究结论是对于术后脓毒症患者,采用1.38-1.88ug/kg/h的肝素,可有效降低SOFA评分,利于患者的康复。该研究方法可以在复杂的不同病例、不同时段变化的治疗方案以及病情复杂变化中,有效找出最优化的个体化方案,常规RCT研究无法完成,因此具备较佳应用前景。

六、总结

围术期大数据势必推动麻醉学管理的进步;

麻醉多目标优化是必然趋势:借助算法可以完成RCT无法应用的研究,建议尽早介入(仍然需要有科学问题);

随着研究的深入,围术期大数据驱动下的麻醉管理研究势必会发现既往无法发现的内容,从而给手术患者带来更大更多的益处;

特有规律和流程:建议找成熟团队帮带研究;

围术期大数据研究越来越多,内卷严重,严谨的设计+多中心研究;

研究的难点在于高质量数据集:要么来自于知名数据库,要么提供足够的佐证证明数据的质量(投稿的关键)。

专家简介

主任医师、博士研究生导师

陆军军医大学第一附属医院(重庆西南医院)麻醉科主任

中华医学会麻醉学分会委员、全军麻醉青年委员会副主任委员、重庆市医学会麻醉学分会副主任委员,重庆市医师会麻醉学分会常委。

重庆英才·创新领军人才,陆军科技英才、重庆医师协会“优秀麻醉医师奖”、陆军军医大学优秀研究生导师

主持国家自然科学基金项目5项、主持国家重点研发计划、国家科技支撑计划分课题各1项、主持重庆市教改重点课题1项以及中国学位与研究生教育委员会等教学课题4项。重庆市课题4项。

第一/通讯作者发表SCI40篇(TOP6篇,最高分17.649)。

参加了“北京小汤山抗击非典”、“汶川抗震救灾”、“2020年武汉抗疫”“2022年上海抗疫”等

本公众平台所刊载原创或转载内容不代表米勒之声的观点或立场。文中所涉及药物使用、疾病诊疗等内容仅供医学专业人士参考。

—END—

编辑:MiLu.米鹭

校对:Michel.米萱

医学审核:何思梦博士

不感兴趣

看过了

取消

人点赞

人收藏

打赏

我有话说

0/500

同步到新浪微博

您的申请提交成功

您已认证成功,可享专属会员优惠,买1年送3个月!开通会员,资料、课程、直播、报告等海量内容免费看!

THE END
1.17个机器学习的常用算法通过这种方式来寻找最佳的匹配。因此,基于实例的算法常常也被称为“赢家通吃”学习或者“基于记忆的学习”。常见的算法包括 k-Nearest Neighbor(KNN), 学习矢量量化(Learning Vector Quantization, LVQ),以及自组织映射算法(Self-Organizing Map , SOM)。 8.正则化方法https://zhuanlan.zhihu.com/p/552445012
2.超级干货:到底该如何学习算法?但是对大多数本科同学,尤其是第一次接触算法的同学,《算法导论》实在不是一个好的教材。但很可惜,很多同学在学习中有上面的两个毛病,既过度路径依赖,别人说《算法导论》好,学习算法要走学《算法导论》这个路径,自己就不探索其他更适合自己的学习路径了,一头扎进《算法导论》里;同时还“完美主义”的倾向,对于《https://baijiahao.baidu.com/s?id=1629846079532222044&wfr=spider&for=pc
3.如何有效学习算法?算法学习学习算法需要系统性的方法和实践,以下是一些有效的学习步骤和资源建议 基础知识学习: 数学基础:掌握离散数学、概率论、统计学等基础知识 编程基础:熟练掌握至少一种编程语言,如Python、C++、Java等 数据结构与算法基础: 数据结构:学习数组、链表、栈、队列、树、图等数据结构 https://blog.csdn.net/qq_49548132/article/details/140109291
4.机器学习常见算法类型都有哪些算法是程序员在学习软件编程开发技术的时候需要重点掌握的一个编程开发技术知识,而今天我们就通过案例分析来了解一下,机器学习常见算法类型都有哪些。 1.分类算法 这是一种监督学习方法。有很多算法帮助我们解决分类问题,比如K近邻、决策树、朴素贝叶斯、贝叶斯网络、逻辑回归、SVM等算法。人工神经网络和深度学习也往往用https://www.douban.com/note/782408490/
5.机器学习中的特征提取方法特征提取算法有哪些机器学习中的特征提取方法 特征提取算法有哪些 说明:此处暂时简单介绍下各种特征提取算法,后续完善。 前言:模式识别中进行匹配识别或者分类器分类识别时,判断的依据就是图像特征。用提取的特征表示整幅图像内容,根据特征匹配或者分类图像目标。常见的特征提取算法主要分为以下3类:https://blog.51cto.com/u_16099263/8634144
6.BAT机器学习面试1000题系列(二)109.准备机器学习面试应该了解哪些理论知识? 知乎解答 110.标准化与归一化的区别? 简单来说,标准化是依照特征矩阵的列处理数据,其通过求z-score的方法,将样本的特征值转换到同一量纲下。归一化是依照特征矩阵的行处理数据,其目的在于样本向量在点乘运算或其他核函数计算相似性时,拥有统一的标准,也就是说都转化为“https://www.jianshu.com/p/4a7f7127eef1
7.17个机器学习的常用算法通过这种方式来寻找最佳的匹配。因此,基于实例的算法常常也被称为“赢家通吃”学习或者“基于记忆的学习”。常见的算法包括k-Nearest Neighbor(KNN),学习矢量量化(Learning Vector Quantization,LVQ),以及自组织映射算法(Self-Organizing Map,SOM) 8.正则化方法https://aidc.shisu.edu.cn/78/aa/c13626a161962/page.htm
8.下列属于监督学习的算法/方法有()。A决策树B回归分析C层次聚下列属于监督学习的算法/方法有( )。 A、决策树 B、回归分析 C、层次聚类 D、中心向量分类法 点击查看答案http://www.ppkao.com/wangke/daan/9fe1b64128614ad1b6aa71f5cb213fbd
9.基于Q学习算法的有状态网络协议模糊测试方法研究AET这种测试方法提高了测试用例有效性,但前置引导序列和回归序列这些辅助报文在测试过程中的重复交互降低了测试效率,且因是根据协议实体所处的协议状态输入报文类型相对应的测试用例,导致无法发现由报文异常输入顺序所引出的协议缺陷。 因此,本文针对有状态网络协议提出了一种基于Q-学习算法的模糊测试方法,不需要引导状态的http://www.chinaaet.com/article/3000117697
10.年薪50万!北航合肥创新研究院招募研究员!澎湃号·政务4、了解CV、机器学习、深度学习或强化学习、大数据分析等常用算法及模型,具备较强的编程能力,熟悉Tensorflow等机器学习平台; 5、有重大基础研究和应用研究经验者以及具备产学研合作和科技成果转化经验者优先; 6、能紧跟自身科研领域的发展方向,具有较强的团结协作、拼搏奉献精神,能够协助团队负责人开展科研管理工作。 https://www.thepaper.cn/newsDetail_forward_4985535
11.什么是机器学习?概要了解无监督机器学习,也就是在数据集中寻找没有标注响应的模式。这种方法可以让您探索不确定包含什么信息的数据。 如何决定使用哪种机器学习算法? 选择正确的算法看似相当困难 - 有监督和无监督机器学习算法有几十种,每种算法都使用了不同的学习方法。 机器学习算法的选择没有最佳方法或万全之策。找到正确的算法在https://ww2.mathworks.cn/discovery/machine-learning.html
12.TensorFlow机器学习常用算法解析和入门集成学习就是将很多分类器集成在一起,每个分类器有不同的权重,将这些分类器的分类结果合并在一起,作为最终的分类结果。最初集成方法为贝叶斯决策。 集成算法用一些相对较弱的学习模型独立地就同样的样本进行训练,然后把结果整合起来进行整体预测。集成算法的主要难点在于究竟集成哪些独立的较弱的学习模型以及如何把学习https://www.w3cschool.cn/tensorflow/tensorflow-s8uq24ti.html
13.精神病学研究中如何进行中小型数据的深度学习鉴于机器学习(尤其是深度学习)的现代算法和方法在其他学科中的出色预测性能,它们为解决这些问题提供了新希望。深度学习算法的优势在于它们可以实现非常复杂的算法,并且原则上可以高效地执行任意预测结果的映射。但是,这种实现是有代价的,需要大量的训练(和测试)样本来推断(有时超过数百万个)模型参数。这似乎与迄今为止在https://www.360doc.cn/mip/955038026.html