商务数据分析(第4次开课)大学慕课

本课程主要介绍深度学习的基本原理、卷积神经网络、循环神经网络、生成对抗网络、注意力机制等基本方法及其典型应用领域,并借助机器学习开源平台TensorFlow实现深度学习在证券趋势预测、声音质量评价、电子推荐、目标检测、社交网络情感分析等多个典型领域的应用。

——课程团队

课程概述

1.我为什么要学习这门课?

2.这门课的主题是什么?

在前面2次介绍传统的机器学习理论的基础上,讨论深度学习的典型算法原理与应用(具体美容请参考下面课程大纲),为实践打下坚实的基础。

3.学习这门课可以获得什么?

4.这门课有什么特色和亮点?

深度学习是一门理论和实践并重的课程,其中的内容比较多,很多算法也有一定的难度。深度学习的应用也需要一定的经验和技巧。本课程参阅了大量文献资料,结合过去多年的数据分析研究和项目实践,深入浅出,学生在可以钻研深度学习的算法以及应用。课程通过大量的选择题、填空和判断题检验和巩固学员对基本知识的理解。

5.这门课的学习方法建议

建议结合教材《机器学习》(人民邮电出版社,2018)、《机器学习案例实战》(人民邮电出版社,2019)、《Python机器学习实战案例》(清华大学出版社,2019)学习,先结合视频了解基本算法,然后通过各单元的测试题和作业巩固基本概念和算法,再通过具体的案例解读思路和代码,巩固算法。线下还要参考实战教材动手实验和实践练习,循序渐进。

6.课程守则(建议)

欢迎大家选修课程,请各位按照课程首页大纲的内容,根据课程内容的顺序,每周结合视频和推荐的配套教材,按时完成基本算法内容学习,并结合单元测试和章节练习,巩固基本概念和算法。在此基础上,完成每单元的实验,并可以进一步阅读推荐的实战案例,理解机器学习的思路以及每个步骤可能遇到的问题和技巧。有问题欢迎在课程讨论区讨论。

授课目标

授课团队

赵卫东董亮

课程大纲

01神经网络基础

理解前馈神经网络的结构、梯度下降法以及网络训练调优的基本方法,并能应用前馈神经网络解决实际问题。建议5个学时。打*的内容属于高级版,后面陆续推出。除了第7章外,其余章节均由赵卫东老师负责。

1.1神经网络简介

1.3神经网络效果评价

1.4神经网络优化

1.5银行客户流失预测

1.6练习题

02深度学习在人工智能系统的应用

通过众多的案例,了解深度学习的典型应用场景。建议2个学时。

2.1深度学习典型应用场景

2.2深度学习应用案例分析

2.3练习题

03卷积神经网络

理解卷积的内涵,熟悉常用的10几种卷积神经网络的结构、训练方法以及典型场景的应用。建议10个学时。

3.1卷积的理解—卷积和池化

3.2常见的卷积模型

@Lenet-5、AlexNet、VGGNet、GoogleLeNet、ResNet等

@Inceptionv2-v4、DarkNet、DenseNet、SSD等*

@MobileNet,ShuffleNet*

3.3胶囊网络*

3.4CNN卷积神经网络应用案例

3.5目标检测常用算法

@R-CNN、FastRCNN、FasterRCNN、YOLOv1-v3等

3.5图像分类

3.6动物识别

3.7物体检测

3.8人脸表情年龄特征识别*

3.9练习题

04循环神经神经网络

理解循环神经网络以及变种LSTM、GRU的结构、训练方法以及典型场景的应用。建议6个学时。

4.1RNN基本原理

4.2LSTM

4.3GRU

4.4CNN+LSTM模型

4.5Bi-LSTM双向循环神经网络结构

4.6Seq2seq模型

4.7注意力机制

4.8自注意力机制*

4.9ELMo、Transformer等*

4.10BERT、EPT、XLNet、ALBERT等*

4.11机器翻译

4.12练习题

05生成对抗网络

理解生成对抗网络的结构、训练方法以及典型场景的应用。建议5个学时。

5.1生成对抗网络模型

5.2GAN的理论知识

5.3DCGAN

5.4自动生成手写体

5.5CycleGAN

5.6WGAN*

5.7练习题

06深度学习神经网络案例

学会使用卷积神经网络、循环神经网络、生成对抗网络的常用算法的应用,解决实际问题,并能做创新性的应用。建议5个学时。

6.1股票走势预测

6.2文本情感分类

6.3图像风格转移

6.4机器翻译

6.5练习题

07强化学习

理解强化学习的基本概念和原理,了解强化学习的典型应用场景。建议2个学时。此部分由董亮老师负责讲授。

7.1强化学习基本原理

7.2强化学习常用模型

7.3强化学习典型应用

7.4深度Q网络*

7.5练习题

08项目驱动的深度学习方法

理解如何结合实际项目,强化机器学习和深度学习理论知识的深入理解,体会深度学习解决实际问题的技巧和技能。建议2个学时,加1个学时的讨论。

课时

8.1项目驱动的深度学习之路

8.2领域问题驱动的机器学习深度教学法

预备知识

学习本课程前需要掌握机器学习,尤其是前馈神经网络的基本原理、常用算法,也需要有较扎实的统计学、高等数学、线性代数、Python编程等基础。强烈建议学完第2次的开课内容再学习本次课程。

证书要求

1.按时学习每章节的视频

2.完成每章节的测试(以选择题为主,每章还至少有一个实验,一个互评的讨论题)

3.积极参加讨论和互评(每学期至少5次)

4.通过课程的结业测试(前面三项占总成绩的25%,结业考试占总成绩的75%)

注意:纸质证书需要付费申请(总分60分以上合格)

参考资料

基本的阅读教材:

1.赵卫东,董亮编著.机器学习.北京:人民邮电出版社,2018(教材,python语言)

2.赵卫东.机器学习案例实战.北京:人民邮电出版社,2019(实验和实训,python语言)

3.赵卫东,董亮著.Python机器学习实战案例.北京:清华大学出版社,2019(实验和实训,python语言)

参考资料:

龙龙.TensorFlow2.0实战案例

常见问题

1.没有基础可以学习吗?

答:强烈建议请先学习第1-2次的课程再学习,本课程需要掌握必要的高等数学、线性代数和统计基础知识以及比较扎实的机器学习基础知识。没有机器学习基础的学员请一定先学习传统的机器学习算法。此外,还需要掌握Python编程基础。

2.深度学习算法那么多,我怎么学习?

答:可以先熟悉基本的方法和算法,培养对数据分析的兴趣,奠定一定的基础后,逐步学习较难的算法。特别推荐通过案例和应用学习。有关机器学习技能的培养很重要,具体的方法请参考论文:数据分析类课程的技能培养方法探讨和基于项目实践的机器学习课程改革(《计算机教育》,2019.9)。

3.如何使用课程中提到的算法解决实际问题?

答:可以课后先阅读和调试一下经典的案例和代码,然后尝试解决一些简单的问题,通过参加比赛、各种技术研讨、仿真型的项目,直至参加实际项目,这是一个循序渐进的过程,需要耐心、兴趣和毅力。

4.本课程怎么学习?

答:本课程是深度学习的基本课程,适合有一定机器学习基础的学员,配合教材讲解实用的内容,与线下的实训练习结合。建议采用翻转教学方式,结合配套教材,首先学习在线的视频,课下结合实际项目案例讨论算法的应用以及其中关键技能,并通过实验练习数据分析的思维和技能。

5.本课程有无配套的实验资源?

答:有的,配套教材封后扫码可以下载,网课也有部分实验内容可以下载练习。

6.实验是否有推荐的平台和工具?

答:以下的机器学习平台和工具可以使用:

7.本课程采用什么语言?

答:Python3语言。

8.课程总体难度如何?

答:属于深度学习基本的内容,难度总体属于初中等,希望学员理解机器学习基础知识,可以先选读本课程第二次开课的内容

9.本课程是否有实战的内容?

答:实战练习的课程大家可以选修机器视觉与边缘计算应用课程。并以推荐的2本实战案例线下练习,提供源代码和数据。

THE END
1.学习算法需要什么样的数学基础?具体看做哪方面的算法,普通码农有高数基础就行了,大数据需要概率论和数理统计方面的知识,机器学习需要线性代数、数值分析、最优化、概率论、随机过程等知识,密码学涉及到线性代数、抽象代数、代数几何等,网上这些课程都有。https://zhidao.baidu.com/question/655607816979994805.html
2.深度强化学习:一万字带你从入门到放弃51CTO博客要理解并掌握 DQN 算法,需要增强学习和深度学习的多方面知识,笔者在 2014 年底开始接触 DQN,但由于对基础知识掌握不全,导致竟然花了近 1 年的时间才真正理解 DQN 的整个算法。因此,本专栏从今天开始推出 **DQN 从入门到放弃 系列 ** 文章,意在通过对增强学习,深度学习等基础知识的讲解,以及基于 Tensorflow 的https://blog.51cto.com/azelearining/3178108
3.什么是数据结构?什么是算法?怎么学习数据结构与算法?学习算法,我们不需要死记硬背那些冗长复杂的背景知识、底层原理、指令语法……需要做的是领悟算法思想、理解算法对内存空间和性能的影响,以及开动脑筋去寻求解决问题的最佳方案。相比编程领域的其他技术,算法更纯粹,更接近数学,也更具有趣味性。 本文将回顾数据结构与算法的基础知识,学习日常所接触场景中的一些算法和策https://maimai.cn/article/detail?fid=1744039689&efid=u2sSJyH6RePBrCh7o1dCfA
4.迁移学习基础知识及DAN算法代码解析· 为什么需要迁移学习 · 迁移学习的研究领域 · 迁移学习的应用 · 基础知识 · 迁移学习的基本方法 · 迁移学习算法-TCA · 迁移学习算法-Deep Adaptation Networks 定义 · 迁移学习是一种学习的思想和模式。 · 迁移学习作为机器学习的一个重要分支,侧重于将已经学习过的知识迁移应用于新的问题中。 http://www.360doc.com/content/12/0121/07/4310958_893222638.shtml
5.算法工程师要学什么常见问题算法工程师必备七大技能:数据结构和算法编程语言数学基础算法设计与分析分布式系统机器学习和深度学习软件工程实践,助力解决计算机科学和工业中的复杂问题。 算法工程师必修技能 算法工程师是计算机科学领域的专业人员,负责设计、分析和实现高效算法来解决计算问题。要成为一名合格的算法工程师,需要掌握以下核心技能: 1. 数据https://m.php.cn/faq/816502.html
6.思考一下,联邦学习可以训练大语言模型吗?澎湃号·湃客但真实状况下的联邦学习,客户端节点很多是手机、平板,FedLLM 并不能适配这些情况。同样的问题也存在于客户端节点数据量的情况,即 FedLLM 假设客户端是足够容纳训练本地 LLM 所需要的数据量的。最后,FedLLM 并没有讨论什么样的聚合算法适合 FL for LLM,也没有讨论是否需要改进客户端训练 LLM 的算法,这对于真正https://www.thepaper.cn/newsDetail_forward_23798909
7.人工智能岗位需要具备哪些技能?二、数学与统计学基础: 人工智能技术依赖于数学和统计学的基础。线性代数、概率论、统计学等领域的知识对于理解和设计机器学习算法至关重要。对于深度学习等复杂模型,掌握微积分和优化理论也是必不可少的。这些数学和统计学基础将帮助您更好地理解算法原理,进行模型调整和改进。 https://www.cda.cn/view/203040.html
8.科学网—[转载]强化学习在资源优化领域的应用2.2 强化学习算法基础 根据智能体在与环境交互过程中具体学习的内容,可以把无须对环境进行建模(即model-free)的强化学习算法分为两大类:直接学习动作执行策略的策略优化算法(如REINFORCE)和通过学习一个值函数进而做出动作执行决策的值优化算法(如Q-learning)。 https://blog.sciencenet.cn/blog-3472670-1312677.html
9.BP神经网络基础算法腾讯云开发者社区BP神经网络基础算法 BP算法是一种有监督式的学习算法,其主要思想是:输入学习样本,使用反向传播算法对网络的权值和偏差进行反复的调整训练,使输出的向量与期望向量尽可能地接近,当网络输出层的误差平方和小于指定的误差时训练完成,保存网络的权值和偏差。具体步骤如下:https://cloud.tencent.com/developer/article/2034926
10.统计学习方法(豆瓣)—— 引自章节:第一篇 监督学习 算法2.2 (感知机学习算法的对偶形式) (3) 如果 y_i(\sum_{j=1}^N \alpha_j y_j x_j \dot x_i+b) \le 0, \alpha_i \leftarrow \alpha_i+\eta b \leftarrow b + \eta y_i (查看原文) https://book.douban.com/subject/10590856/
11.腾讯算法岗武功秘籍(上)尤其最后的两三道编程题,其实腾讯出的都是常规题,只要数据结构和算法基础扎实,AC两三道应该没问题。 ★ 语言组织能力也很重要,逻辑能力好点,做过的事给面试官讲清楚。就算很水的项目,多介绍下原理,多说说自己的理解,多讲讲自己的改进,还是有很多谈资的。 ★ 腾讯机器学习算法岗的面试算是非常正规的了,整套https://www.flyai.com/article/930
12.深度学习高手笔记卷1:基础算法本书通过扎实、详细的内容和清晰的结构,从算法理论、算法源码、实验结果等方面对深度学习算法进行分析和介绍。本书共三篇,第一篇主要介绍深度学习在计算机视觉方向的一些卷积神经网络,从基础骨干网络、轻量级 CNN、模型架构搜索 3 个方向展开,介绍计算机视觉方向的里程碑算法;第二篇主要介绍深度学习在自然语言处理方向的https://www.epubit.com/bookDetails?id=UB7d8623610d375
13.入门必看算法基础知识讲解小白都也能看得懂就比如我需要输出1到100范围内的所有数值,我们会考虑到使用循环语句输出,使用循环语句输出这个思路就可以说是算法,然后实际上根据这个思路编写出来的代码就可以称为程序。 四、算法效率的度量方法 四、算法效率的度量方法 通过上文的介绍,大家已经对算法有了初步的了解,但是,实际情况如何衡量一个算法的好坏呢,相https://blog.csdn.net/m0_63174618/article/details/138362160
14.机器学习和深度学习之数学基础线性代数是机器学习和深度学习算法的数学基础之一,这个系列的文章主要描述在AI算法中可能涉及的线性代数相关的基本概念和运算。本文主要参考Garrett Thomas(2018),Marc Peter Deisenroth(2018),Strang(2003),José Miguel Figueroa-O’Farrill, Isaiah Lankham(UCD, MAT67,2012)等教授的相关讲座和教材。本文的主要内容包https://www.jianshu.com/p/2134923e1f5b