机器学习中入门级必学的算法有哪些?人工智能

KNearestNeighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法,总体来说KNN算法是相对比较容易理解的算法。

如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

两个样本的距离可以通过如下公式计算,又叫欧式距离,关于距离公式会在后面进行讨论

应用场景为:房价预测、销售额度预测、贷款额度预测

什么是线性回归?

线性回归(Linearregression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。

特点:只有一个自变量的情况称为单变量回归,多于一个自变量情况的叫做多元回归。

线性回归用矩阵表示举例:

那么怎么理解呢?我们来看几个例子:

期末成绩:0.7×考试成绩+0.3×平时成绩

房子价格=0.02×中心区域的距离+0.04×城市一氧化氮浓度+(-0.12×自住房平均房价)+0.254×城镇犯罪率

上面两个例子,我们看到特征值与目标值之间建立了一个关系,这个关系可以理解为线性模型。

逻辑回归(LogisticRegression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归。由于算法的简单和高效,在实际中应用非常广泛。

这里就可以发现一个特点了,就是两个类别之间都属于判断,逻辑回归就是解决二分类问题的利器。

要想掌握逻辑回归,必须掌握两点:

逻辑回归中,其输入值是什么?

如何判断逻辑回归的输出?

输入:

激活函数:sigmoid函数

判断标准

回归的结果输入到sigmoid函数当中,输出结果:[0,1]区间中的一个概率值,默认为0.5为阈值。

逻辑回归最终的分类是通过属于某个类别的概率值来判断是否属于某个类别,并且这个类别默认标记为1(正例),另外的一个类别会标记为0(反例)。(方便损失计算)

输出结果解释(重要):假设有两个类别A,B,并且假设我们的概率值为属于A(1)这个类别的概率值。现在有一个样本的输入到逻辑回归输出结果0.55,那么这个概率值超过0.5,意味着我们训练或者预测的结果就是A(1)类别。那么反之,如果得出结果为0.3那么,训练或者预测结果就为B(0)类别。

关于逻辑回归的阈值是可以进行改变的,比如上面举例中,如果你把阈值设置为0.6,那么输出的结果0.55,就属于B类。

决策树:是一种树形结构,其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果,本质是一颗由多个判断节点组成的树。

怎么理解这句话?通过一个对话例子

上面案例是女生通过定性的主观意识,把年龄放到最上面,那么如果需要对这一过程进行量化,该如何处理呢?

此时需要用到信息论中的知识:信息熵,信息增益。

集成学习通过建立几个模型来解决单一预测问题。它的工作原理是生成多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成组合预测,因此优于任何一个单分类的做出预测。

基于位置信息的商业推送,新闻聚类,筛选排序。

图像分割,降维,识别;离群点检测;信用卡异常消费;发掘相同功能的基因片段。

一种典型的无监督学习算法,主要用于将相似的样本自动归到一个类别中。

在聚类算法中根据样本之间的相似性,将样本划分到不同的类别中,对于不同的相似度计算方法,会得到不同的聚类结果,常用的相似度计算方法有欧式距离法。

THE END
1.图解十大经典机器学习算法入门图解十大经典机器学习算法入门 弱人工智能近几年取得了重大突破,悄然间,已经成为每个人生活中必不可少的一部分。以我们的智能手机为例,看看到底温藏着多少人工智能的神奇魔术。 下图是一部典型的智能手机上安装的一些常见应用程序,可能很多人都猜不到,人工智能技术已经是手机上很多应用程序的核心驱动力。https://blog.csdn.net/jrunw/article/details/79205322
2.机器学习入门介绍(非常易懂)TheChosenOne8、对于机器学习算法的学习与使用原则: 不仅仅是调库,而是要深入到算法的内部,更好的理解算法的好坏,在理解的接触上争取创造新的算法。 //2019.07.31下午 机器学习基础入门 1、机器学习的典型数据集iris数据集(根据花的四种特征来区分三种不同的花) https://www.cnblogs.com/Yanjy-OnlyOne/p/11278951.html
3.TensorFlow机器学习常用算法解析和入门上图为基于ICA的人脸识别模型。实际上这些机器学习算法并不是全都像想象中一样复杂,有些还和高中数学紧密相关。 后面讲给大家一一详细单独讲解这些常用算法。 强化学习 13)Q-Learning算法 Q-learning要解决的是这样的问题:一个能感知环境的自治agent,怎样通过学习选择能达到其目标的最优动作。 https://www.w3cschool.cn/tensorflow/tensorflow-s8uq24ti.html
4.清华大学出版社图书详情以Python为基础,使用sklearn平台,封装丰富的机器学习算法;代码详解便于更快地掌握机器学习的思想,加速入门过程;突出实用性,针对每个机器学习算法都有相关案例。作者:周元哲 丛书名:计算机系列教材 定价:49.90元 印次:1-4 ISBN:9787302599982 出版日期:2022.02.01 印刷日期:2023.06.29http://www.tup.tsinghua.edu.cn/bookscenter/book_09067201.html
5.简单快速入门Python机器学习知识高清正版视频在线观看简介:该阶段是机器学习的入门课程,主要介绍一些经典的传统机器学习算法,如分类算法:KNN算法,朴素贝叶斯算法,逻辑回归,决策树算法以及随机森林;回归算法:线性回归,岭回归;聚类算法:KMeans算法,结合Python语言实现的经典机器学习库Sikit-Learn库,实现一些小型预测案例。 意见https://m.iqiyi.com/a_19rrhvzf11.html
6.面向初学者和专家的十大机器学习书籍机器学习算法用于各种应用程序,例如电子邮件过滤和计算机视觉,在这些应用程序中,很难或不可行地开发常规算法来执行所需的任务。想学习机器学习吗?从这10本书开始。 想学习机器学习吗?从这10本书开始。 > Top 10 Books on Machine Learning For Absolute Beginners, Beginners and Experts https://www.51cto.com/article/639967.html
7.入门到起飞保姆级教程,人工智能基础入门必看!机器学习算法咕泡AI创建的收藏夹咕泡AI内容:【人工智能入门必备】机器学习十大算法,入门到起飞保姆级教程,人工智能基础入门必看!【机器学习算法|机器学习入门到精通|深度学习|Python|机器学习】,如果您对当前收藏夹内容感兴趣点击“收藏”可转入个人收藏夹方便浏览https://www.bilibili.com/list/1665832462
8.师书说阅读练习154《机器学习算法的数学解析与Python实现》算是不错的机器学习算法入门读物。 >> 本书的目标读者是想要学习机器学习的学生、程序员、研究人员或者爱好者,以及想要知道机器学习是什么、为什么和怎么用的所有读者。 ◆ 1.1 什么是机器学习 >> 机器学习、人工智能和深度学习的目标都是让算法模拟“智能”,但层次范围不同。 https://www.jianshu.com/p/c6ca0402cb3d
9.机器学习入门86验证数据集与交叉验证腾讯云开发者社区机器学习入门 8-6 验证数据集与交叉验证 本系列是《玩转机器学习教程》一个整理的视频笔记。本小节探讨将数据集划分训练集和测试集的局限性,进而引出验证集,为了解决验证集随机性的问题,引入了交叉验证和留一法,并进一步探讨网格搜索背后的意义,最后通过编程实现调参选择模型的整个过程。https://cloud.tencent.com/developer/article/1561721
10.95后哈佛小哥撰写《从零开始的机器学习》,入门必备,书籍资源已开放这本书涵盖了机器学习领域最常见的方法,就像是一位机器学习工程师的工具箱,适用于入门级学习者。撰写目的是为读者提供独立构建一些基本的机器学习算法的实践指导,如果用工具箱类比的话,就是教会读者具体使用一把螺丝刀、一盒卷尺。书中的每一章都对应一种机器学习方法。 https://m.thepaper.cn/baijiahao_9418519
11.机器学习从入门到精通配套教材课件完整版电子教案.pptx机器学习从入门到精通; 第1章 机器学习概述;1.1 人工智能;1.2 机器学习;1.2.1 机器学习的发展;1.2.2 机器学习分类;1.2.3 机器学习经典算法;1.2.4 机器学习的入门;1.3 机器学习的工作流程;1.3.1 准备数据集;1.3.1 准备数据集;1.3.1 准备数据集;1.3.2 进行模型训练;1.3.2 进行模型训练;1.3.2 进行模型https://max.book118.com/html/2022/0713/5110042200004304.shtm
12.如何选择机器学习算法Python 入门(第 1 天) 训练和部署图像分类 构建训练管道 (Python) 与Azure 机器学习交互 处理数据 自动化机器学习 训练模型 使用基础模型 负责任地开发和监视 使用管道协调工作流 概述 设计器(拖放 ML) 什么是设计器 算法备忘单 如何选择算法 转换数据 https://docs.microsoft.com/zh-cn/azure/machine-learning/studio/algorithm-choice
13.写给程序员的机器学习入门(一)从基础说起前段时间因为店铺不能开门,我花了一些空余时间看了很多机器学习相关的资料,我发现目前的机器学习入门大多要不门槛比较高,要不过于着重使用而忽视基础原理,所以我决定开一个新的系列针对程序员讲讲机器学习。这个系列会从机器学习的基础原理开始一直讲到如何应用,看懂这个系列需要一定的编程知识(主要会使用 python 语言),https://www.flyai.com/article/866
14.一文看懂机器学习「3种学习方法+7个实操步骤+15种常见算法」机器学习研究和构建的是一种特殊算法(而非某一个特定的算法),能够让计算机自己在数据中学习从而进行预测。 所以,机器学习不是某种具体的算法,而是很多算法的统称。 机器学习包含了很多种不同的算法,深度学习就是其中之一,其他方法包括决策树,聚类,贝叶斯等。 https://easyai.tech/ai-definition/machine-learning/
15.Python机器学习基础教程中文pdf高清版[28MB]电子书下载《Python机器学习基础教程》是机器学习入门书,以Python语言介绍。主要内容包括:机器学习的基本概念及其应用;实践中最常用的机器学习算法以及这些算法的优缺点;在机器学习中待处理数据的呈现方式的重要性,以及应重点关注数据的哪些方面;模型评估和调参的高级方法,重点讲解交叉验证和网格搜索;管道的概念;如何将前面各章的方法https://www.jb51.net/books/658226.html