入门机器学习新手必看10大算法算法机器学习数据集新浪科技

本文介绍了机器学习新手需要了解的10大算法,包括线性回归、Logistic回归、朴素贝叶斯、K近邻算法等。

在机器学习中,有一种叫做「没有免费的午餐」的定理。简而言之,它指出没有任何一种算法对所有问题都有效,在监督学习(即预测建模)中尤其如此。

例如,你不能说神经网络总是比决策树好,反之亦然。有很多因素在起作用,例如数据集的大小和结构。

因此,你应该针对具体问题尝试多种不同算法,并留出一个数据「测试集」来评估性能、选出优胜者。

当然,你尝试的算法必须适合你的问题,也就是选择正确的机器学习任务。打个比方,如果你需要打扫房子,你可能会用吸尘器、扫帚或拖把,但是你不会拿出铲子开始挖土。

大原则

不过也有一个普遍原则,即所有监督机器学习算法预测建模的基础。

机器学习算法被描述为学习一个目标函数f,该函数将输入变量X最好地映射到输出变量Y:Y=f(X)

这是一个普遍的学习任务,我们可以根据输入变量X的新样本对Y进行预测。我们不知道函数f的样子或形式。如果我们知道的话,我们将会直接使用它,不需要用机器学习算法从数据中学习。

最常见的机器学习算法是学习映射Y=f(X)来预测新X的Y。这叫做预测建模或预测分析,我们的目标是尽可能作出最准确的预测。

对于想了解机器学习基础知识的新手,本文将概述数据科学家使用的top10机器学习算法。

1.线性回归

线性回归可能是统计学和机器学习中最知名和最易理解的算法之一。

线性回归的表示是一个方程,它通过找到输入变量的特定权重(称为系数B),来描述一条最适合表示输入变量x与输出变量y关系的直线。

线性回归

例如:y=B0+B1*x

我们将根据输入x预测y,线性回归学习算法的目标是找到系数B0和B1的值。

可以使用不同的技术从数据中学习线性回归模型,例如用于普通最小二乘法和梯度下降优化的线性代数解。

2.Logistic回归

Logistic回归是机器学习从统计学中借鉴的另一种技术。它是解决二分类问题的首选方法。

Logistic回归与线性回归相似,目标都是找到每个输入变量的权重,即系数值。与线性回归不同的是,Logistic回归对输出的预测使用被称为logistic函数的非线性函数进行变换。

logistic函数看起来像一个大的S,并且可以将任何值转换到0到1的区间内。这非常实用,因为我们可以规定logistic函数的输出值是0和1(例如,输入小于0.5则输出为1)并预测类别值。

Logistic回归

由于模型的学习方式,Logistic回归的预测也可以作为给定数据实例(属于类别0或1)的概率。这对于需要为预测提供更多依据的问题很有用。

3.线性判别分析(LDA)

Logistic回归是一种分类算法,传统上,它仅限于只有两类的分类问题。如果你有两个以上的类别,那么线性判别分析是首选的线性分类技术。

LDA的表示非常简单直接。它由数据的统计属性构成,对每个类别进行计算。单个输入变量的LDA包括:

每个类别的平均值;

所有类别的方差。

线性判别分析

进行预测的方法是计算每个类别的判别值并对具备最大值的类别进行预测。该技术假设数据呈高斯分布(钟形曲线),因此最好预先从数据中删除异常值。这是处理分类预测建模问题的一种简单而强大的方法。

4.分类与回归树

决策树是预测建模机器学习的一种重要算法。

决策树模型的表示是一个二叉树。这是算法和数据结构中的二叉树,没什么特别的。每个节点代表一个单独的输入变量x和该变量上的一个分割点(假设变量是数字)。

决策树

决策树的叶节点包含一个用于预测的输出变量y。通过遍历该树的分割点,直到到达一个叶节点并输出该节点的类别值就可以作出预测。

决策树学习速度和预测速度都很快。它们还可以解决大量问题,并且不需要对数据做特别准备。

5.朴素贝叶斯

朴素贝叶斯是一个简单但是很强大的预测建模算法。

该模型由两种概率组成,这两种概率都可以直接从训练数据中计算出来:1)每个类别的概率;2)给定每个x的值,每个类别的条件概率。一旦计算出来,概率模型可用于使用贝叶斯定理对新数据进行预测。当你的数据是实值时,通常假设一个高斯分布(钟形曲线),这样你可以简单的估计这些概率。

贝叶斯定理

朴素贝叶斯之所以是朴素的,是因为它假设每个输入变量是独立的。这是一个强大的假设,真实的数据并非如此,但是,该技术在大量复杂问题上非常有用。

6.K近邻算法

KNN算法非常简单且有效。KNN的模型表示是整个训练数据集。是不是很简单?

KNN算法在整个训练集中搜索K个最相似实例(近邻)并汇总这K个实例的输出变量,以预测新数据点。对于回归问题,这可能是平均输出变量,对于分类问题,这可能是众数(或最常见的)类别值。

诀窍在于如何确定数据实例间的相似性。如果属性的度量单位相同(例如都是用英寸表示),那么最简单的技术是使用欧几里得距离,你可以根据每个输入变量之间的差值直接计算出来其数值。

K近邻算法

KNN需要大量内存或空间来存储所有数据,但是只有在需要预测时才执行计算(或学习)。你还可以随时更新和管理训练实例,以保持预测的准确性。

7.学习向量量化

K近邻算法的一个缺点是你需要遍历整个训练数据集。学习向量量化算法(简称LVQ)是一种人工神经网络算法,它允许你选择训练实例的数量,并精确地学习这些实例应该是什么样的。

学习向量量化

LVQ的表示是码本向量的集合。这些是在开始时随机选择的,并逐渐调整以在学习算法的多次迭代中最好地总结训练数据集。在学习之后,码本向量可用于预测(类似K近邻算法)。最相似的近邻(最佳匹配的码本向量)通过计算每个码本向量和新数据实例之间的距离找到。然后返回最佳匹配单元的类别值或(回归中的实际值)作为预测。如果你重新调整数据,使其具有相同的范围(比如0到1之间),就可以获得最佳结果。

如果你发现KNN在你的数据集上达到很好的结果,请尝试用LVQ减少存储整个训练数据集的内存要求。

8.支持向量机(SVM)

支持向量机可能是最受欢迎和最广泛讨论的机器学习算法之一。

超平面是分割输入变量空间的一条线。在SVM中,选择一条可以最好地根据输入变量类别(类别0或类别1)对输入变量空间进行分割的超平面。在二维中,你可以将其视为一条线,我们假设所有的输入点都可以被这条线完全的分开。SVM学习算法找到了可以让超平面对类别进行最佳分割的系数。

超平面和最近的数据点之间的距离被称为间隔。分开两个类别的最好的或最理想的超平面具备最大间隔。只有这些点与定义超平面和构建分类器有关。这些点被称为支持向量,它们支持或定义了超平面。实际上,优化算法用于寻找最大化间隔的系数的值。

SVM可能是最强大的立即可用的分类器之一,值得一试。

9.Bagging和随机森林

随机森林是最流行和最强大的机器学习算法之一。它是BootstrapAggregation(又称bagging)集成机器学习算法的一种。

bootstrap是从数据样本中估算数量的一种强大的统计方法。例如平均数。你从数据中抽取大量样本,计算平均值,然后平均所有的平均值以便更好的估计真实的平均值。

bagging使用相同的方法,但是它估计整个统计模型,最常见的是决策树。在训练数据中抽取多个样本,然后对每个数据样本建模。当你需要对新数据进行预测时,每个模型都进行预测,并将所有的预测值平均以便更好的估计真实的输出值。

随机森林是对这种方法的一种调整,在随机森林的方法中决策树被创建以便于通过引入随机性来进行次优分割,而不是选择最佳分割点。

因此,针对每个数据样本创建的模型将会与其他方式得到的有所不同,不过虽然方法独特且不同,它们仍然是准确的。结合它们的预测可以更好的估计真实的输出值。

如果你用方差较高的算法(如决策树)得到了很好的结果,那么通常可以通过bagging该算法来获得更好的结果。

10.Boosting和AdaBoost

Boosting是一种集成技术,它试图集成一些弱分类器来创建一个强分类器。这通过从训练数据中构建一个模型,然后创建第二个模型来尝试纠正第一个模型的错误来完成。一直添加模型直到能够完美预测训练集,或添加的模型数量已经达到最大数量。

AdaBoost是第一个为二分类开发的真正成功的boosting算法。这是理解boosting的最佳起点。现代boosting方法建立在AdaBoost之上,最显著的是随机梯度提升。

AdaBoost

AdaBoost与短决策树一起使用。在第一个决策树创建之后,利用每个训练实例上树的性能来衡量下一个决策树应该对每个训练实例付出多少注意力。难以预测的训练数据被分配更多权重,而容易预测的数据分配的权重较少。依次创建模型,每个模型在训练实例上更新权重,影响序列中下一个决策树的学习。在所有决策树建立之后,对新数据进行预测,并且通过每个决策树在训练数据上的精确度评估其性能。

因为在纠正算法错误上投入了太多注意力,所以具备已删除异常值的干净数据非常重要。

THE END
1.图解十大经典机器学习算法入门传统的机器学习算法包括决策树、聚类、贝叶斯分类、支持向量机、EM、Adaboost等等。这篇文章将对常用算法做常识性的介绍,没有代码,也没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的。 人工智能领域知识面广泛,推荐专注于人工智能在线教育的平台—深蓝学院。深蓝学院由中科院自动化所毕业博士团队https://blog.csdn.net/jrunw/article/details/79205322
2.机器学习十大经典算法入门[通俗易懂]腾讯云开发者社区机器学习十大经典算法入门[通俗易懂] 大家好,又见面了,我是你们的朋友全栈君。 一,SVM(Support Vector Machine)支持向量机a. SVM算法是介于简单算法和神经网络之间的最好的算法。 b. 只通过几个支持向量就确定了超平面,说明它不在乎细枝末节,所以不容易过拟合,但不能确保一定不会过拟合。可以处理复杂的非线性https://cloud.tencent.com/developer/article/2098380
3.17个机器学习的常用算法在这种学习模式下,输入数据作为对模型的反馈,不像监督模型那样,输入数据仅仅是作为一个检查模型对错的方式,在强化学习下,输入数据直接反馈到模型,模型必须对此立刻作出调整。常见的应用场景包括动态系统以及机器人控制等。常见算法包括Q-Learning以及时间差学习(Temporal difference learning) https://aidc.shisu.edu.cn/78/aa/c13626a161962/page.htm
4.机器学习入门介绍(非常易懂)TheChosenOne(3)有些算法只可以解决分类问题,有些算法只可以解决回归问题,而有的算法既可以解决分类问题,又可以解决回归问题。 (4)一些情况下,一些回归任务可以根据实际情况将其转换为分类任务。 7、机器学习主要分为非监督学习、监督学习、半监督学习以及增强学习四种大类算法,其中监督学习主要分为分类问题和回归问题。 https://www.cnblogs.com/Yanjy-OnlyOne/p/11278951.html
5.TensorFlow机器学习常用算法解析和入门上图为基于ICA的人脸识别模型。实际上这些机器学习算法并不是全都像想象中一样复杂,有些还和高中数学紧密相关。 后面讲给大家一一详细单独讲解这些常用算法。 强化学习 13)Q-Learning算法 Q-learning要解决的是这样的问题:一个能感知环境的自治agent,怎样通过学习选择能达到其目标的最优动作。 https://www.w3cschool.cn/tensorflow/tensorflow-s8uq24ti.html
6.如何选择机器学习算法Python 入门(第 1 天) 训练和部署图像分类 构建训练管道 (Python) 与Azure 机器学习交互 处理数据 自动化机器学习 训练模型 使用基础模型 负责任地开发和监视 使用管道协调工作流 概述 设计器(拖放 ML) 什么是设计器 算法备忘单 如何选择算法 转换数据 https://docs.microsoft.com/zh-cn/azure/machine-learning/studio/algorithm-choice
7.一文看懂机器学习「3种学习方法+7个实操步骤+15种常见算法」机器学习研究和构建的是一种特殊算法(而非某一个特定的算法),能够让计算机自己在数据中学习从而进行预测。 所以,机器学习不是某种具体的算法,而是很多算法的统称。 机器学习包含了很多种不同的算法,深度学习就是其中之一,其他方法包括决策树,聚类,贝叶斯等。 https://easyai.tech/ai-definition/machine-learning/
8.算法小白的机器学习入门实践,从零到上线总之一句话,可预见的未来策略会继续膨胀,维护难度也会进一步提升。意识到技术风险后,组内讨论认为如果使用机器学习方案一方面可降低解决方案的复杂度(降低维护成本),另一方面利于后期场景扩展和能力迁移。至少也应该能做到模型解决通用场景,在此基础上再定制优化策略(降低开发成本)。 https://www.jianshu.com/p/c0beb46b92d6
9.常用机器学习算法汇总比较(完)51CTO博客常用机器学习算法汇总比较的最后一篇,介绍提升(Boosting)算法、GBDT、优化算法和卷积神经网络的基本原理、优缺点。 9. 提升(Boosting)方法 简述 提升方法(boosting)是一种常用的统计学习方法,在分类问题中,它通过改变训练样本的权重,学习多个分类器,并将这些分类器进行线性组合,提供分类的性能。 https://blog.51cto.com/u_8985428/3835836
10.Python机器学习基础教程中文pdf高清版[28MB]电子书下载《Python机器学习基础教程》是机器学习入门书,以Python语言介绍。主要内容包括:机器学习的基本概念及其应用;实践中最常用的机器学习算法以及这些算法的优缺点;在机器学习中待处理数据的呈现方式的重要性,以及应重点关注数据的哪些方面;模型评估和调参的高级方法,重点讲解交叉验证和网格搜索;管道的概念;如何将前面各章的方法https://www.jb51.net/books/658226.html
11.统计学习方法(豆瓣)李航 日本京都大学电气工程系毕业,日本东京大学计算机科学博士。曾任职于日本NEC公司中央研究所,微软亚洲研究院高级研究员及主任研究员,现任华为诺亚方舟实验室首席科学家。北京大学、南开大学、西安交通大学客座教授。研究方向包括信息检索、自然语言处理、统计机器学习及数据挖掘。 https://book.douban.com/subject/10590856/
12.ai新手入门教程——机器学习算法现在,让我们来进一步了解机器学习算法,它是实现人工智能的核心。1. 监督学习(Supervised Learning)在监督学习中,我们有一组带有标签的数据,其中包含了输入和输出的对应关系。我们的目标是通过训练模型,使其能够根据输入预测正确的输出。常见的监督学习算法包括线性回归、逻辑回归和支持向量机(SVM)等。2. 无监督学习https://baijiahao.baidu.com/s?id=1777538928850108541&wfr=spider&for=pc
13.初学机器学习?推荐从这十大算法入手这篇博文中的十大机器学习算法是专门写给初学者的。这些算法大多数都是我在孟买大学攻读计算机工程学士学位的时候,在“数据存储和挖掘“课程中学到的。“数据存储和挖掘“课程是一个非常棒的机器学习算法领域的入门课程。由于最后两个算法(集成方法)广泛运用于 Kaggle 比赛中,我专门把它们也写到了文章中。希望你喜欢这https://36kr.com/p/1721961660417