中国青年报:近八成受访大学生认为需要减少对算法推荐的依赖

中国青年报:近八成受访大学生认为需要减少对算法推荐的依赖

近日,中国青年报·中青校媒就算法推荐话题面向以大学生为主体的青年展开问卷调查,回收有效问卷3694份,78%的受访者认为自己需要减少对算法推荐的依赖,72.8%的受访者曾遇到过“大数据杀熟”的情况,68.9%的受访者认为推荐算法应该更加透明。

当“算法推荐”不再“隐身”

不久前,就读于北京林业大学的窦颖慧和朋友聊到想购买一款耳机,她的社交平台首页、购物软件主页立即被各类耳机占领。有时窦颖慧会和身边的朋友开玩笑说:“小声一点,别被我的大数据听到了。”

今年刚毕业于福建一所高校的倪梦娜发现,算法推荐已经渗透到她生活的各个角落,“给我推荐的视频总能让我感到舒适愉悦”;打车软件对她的生活规律了若指掌,甚至知道她每周三或周四都要去一位朋友家,到了这天,就会自动在目的地栏中填入朋友的地址。

调查显示,89.7%的受访者意识到“算法推荐”的存在,视频平台(90.5%)、购物平台(74.4%)、社交媒体(67.7%)、音乐平台(66.1%)、生活消费软件(39.2%)都是受访者经常使用的含有“算法推荐”的平台。

熟悉了算法推荐的特点,倪梦娜甚至会“驯化”常用的App,先给自己打好标签,方便App推荐自己喜欢的内容。在一些视频平台观看视频时,她还会专门“一键三连”(网络流行语,指对视频作品进行点赞、投币、收藏——记者注),让App清楚地了解自己喜欢什么。“如果看完直接退出,算法可能就捕捉不到我喜欢这个视频,给我推荐的内容就会有点‘脱轨’。”

虽然并不抵触算法推荐,但倪梦娜坦言,自己也遇到过“算法刺客”。“在和朋友同时打同一类型的车、走同一条路线时,我的打车价格会比朋友高出五六元。平台给我们发放的折扣券不一样。”

每到一个城市旅游,刘昊冉都会在短视频平台刷到当地旅游攻略和店铺推荐。不过这些算法精心准备的内容,刘昊冉并不“买账”。在他看来,内容大多同质化严重,视频拍摄的文案、运镜、音乐几乎都是同一个模板,参考价值并不大。

就读于云南一所高校的王明明(化名)是个无线电爱好者,这个小众爱好,让他对算法推荐哭笑不得。他有时会在购物软件上购买一些电子元器件。“如果数据量够大,推荐会相对精准,但因为我的爱好很小众,算法可能抓取不到足够的数据,比如当我买了射频混频器,它就给我推荐手机信号增强器,但这和我的爱好毫无关联。”

对稀奇古怪的推荐内容感到不适的王明明,有时会和算法开玩笑,“我会收藏一些看起来好玩、但绝对不会买的产品,混淆算法的视听”。他和朋友还讨论过,有些软件关闭个性化推荐功能后,效果并不明显,于是他们互相交流如何“反算法”,王明明的“胡乱收藏”法也在朋友之间传播开来。

“算法推荐‘似乎比我更懂我’”

调查显示,60.3%的受访者对算法推荐的内容表示满意。在受访者看来,更容易找到感兴趣的内容(68.8%)、提高信息获取效率(58.0%)、增加接触新事物的机会(43.6%)、提供更多实用的学习资源(26.7%)、匹配志同道合的朋友(24.9%)都是算法推荐带来的价值。

两个月前,浙江海洋大学的袁家乐在算法推荐的帮助下买到了一台二手相机,足足省下了1700元。“我刚原价下单,就刷到了同校同学出二手相机的帖子,很多离我更近的卖家信息也都出现在推荐页面,而之前大多是其他城市的信息。”

袁家乐认为算法推荐也有好处:“算法筛选信息更有效率,我也更容易找到兴趣爱好等方面比较匹配的朋友。”

在准备国际人才英语考试(中级)期间,袁家乐经常在社交媒体上搜集备考攻略,“15天极速备考”“非英专生通过考试需要哪几步”等符合她身份和需求的内容接连出现在推荐主页。“算法推荐的内容帮我补足了很多知识和方法上的漏洞,似乎比我更懂我。”最终,袁家乐取得了自己满意的成绩。

算法推荐仍需多样化,超六成受访大学生曾点击“不感兴趣”

“算法给用户推荐最关心、最感兴趣的内容,削减用户较少涉及的领域,让用户处于信息的自循环,大家心里都明白这层‘茧房’已经越来越坚固,但难以舍弃和打破。”窦颖慧说。

刘昊冉觉得,算法推荐虽然提高了信息匹配的效率,但个人应该有更多的选择权,“在获取个人信息时平台需要和我确认是否允许,我可以随时选择是否接收算法推荐的内容”。

倪梦娜希望App可以给她推荐一些她喜好以外的内容,但要控制比例,“推荐80%我喜欢的内容,20%我并不常看的内容,避免被困在‘信息茧房’中”。

一个好的算法推荐长什么样?在受访者看来,考虑用户多样性需求(79.1%)、增加对推送内容的筛选(59.3%)、允许用户有更多的控制权(58.3%)、确保用户隐私数据安全(46.4%)、向用户解释清楚推荐机制(40.1%)、优先推荐积极有益的内容(37.1%)都是不可或缺的因素。

“我选择将部分个人信息提供给算法,那么算法也应当为我推荐更有价值的优质信息,而不是推荐同质化的内容。”袁家乐对算法和用户的“对等关系”表达了期待,“如果仅考虑部分人的利益,用算法搞‘算计’,忽视用户的长期使用体验,最终用户也会‘寒心’”。

THE END
1.智能推荐算法优化与实施方案智能推荐算法优化与实施方案 下载积分: 900 内容提示: 智能推荐算法优化与实施方案 第一章 智能推荐算法概述 3 1.1 推荐系统的发展历程 https://www.doc88.com/p-90020594417462.html
2.推荐系统算法实战:从协同过滤到深度学习的架构演进推荐系统是一种信息过滤系统,它可以帮助用户发现和推荐他们可能感兴趣的内容,如商品、音乐、视频等。推荐系统可以分为多个类型,其中基于内容的推荐和协同过滤是比较常见的方法。 协同过滤推荐算法 协同过滤是一种常用的推荐系统算法,它基于用户对项目的评价来发现用户之间的相似性,并利用这种相似性来推荐项目。协同过滤又https://www.jianshu.com/p/8d3164c44113
3.一文入门个性化联邦推荐系统腾讯云开发者社区论文试图解决的问题是设计一个新的联邦学习框架来解决社交推荐任务中的挑战。具体而言,论文关注的问题包括异构性、个性化和隐私保护。异构性指的是联邦推荐系统需要同时存储并融合用户-用户和用户-物品之间的交互关系。个性化指的是每个客户端具有特定的物品兴趣和社交连接,导致本地数据的非独立同分布分布,模型需要能够对https://cloud.tencent.com/developer/article/2477846
4.常用的几种推荐算法介绍本文详细介绍了个性化推荐系统中的各种推荐算法,包括基于内容、协同过滤、关联规则、效用推荐、知识推荐、上下文推荐和深度学习等,并对比了UserCF和ItemCF的优缺点,适用于电商、资讯、音乐、短视频等领域。 摘要由CSDN通过智能技术生成 个性化推荐(推荐系统)经历了多年的发展,已经成为互联网产品的标配,也是 AI 成功落地的https://blog.csdn.net/leyang0910/article/details/135395507
5.基于图计算技术的在线教育平台推荐算法研究和实现二部图算法 推荐系统 图计算 个性化教育 协同过滤https://cdmd.cnki.com.cn/Article/CDMD-10248-1019684600.htm
6.推荐算法简历模板下载推荐算法简历在线制作简历网(www.jianli.com)提供推荐算法简历模板下载,可轻松在线设计适合推荐算法求职的简历模板,快速制作电子版,免费导出,同时提供推荐算法简历模板范文及推荐算法简历怎么写等简历攻略!https://www.jianli.com/resumelist/tjsf/
7.美团短视频推荐算法工程师招聘(工资待遇要求)北京三快在线科技有限美团短视频推荐算法工程师招聘(北京三快在线科技有限公司):根据算法统计,美团短视频推荐算法工程师工资拿50K以上占75%,招聘经验要求3-5年经验占比最多,要求一般,招聘学历要求本科学历占比最多,要求一般,更多短视频推荐算法工程师招聘,请上职友集。https://www.jobui.com/company/12214432/salary/j/duanshipintuijiansuanfagongchengshi/
8.基于群组推荐的在线学习系统研究与实现推荐算法可以帮助用户推荐合适的学习资源,但是,群组推荐算法,不仅需要考虑单个用户的偏好,同时需要考虑群组内其他用户的偏好,推荐结果需要尽可能满足群组所有用户。本文以在线学习系统为研究目标,针对以上问题,开展深入的研究,主要的内容与创新点如下:(1)针对在线学习系统具有众多不同风格用户的特点,本文提出一种用户自适应https://wap.cnki.net/lunwen-1020029236.html
9.日常动漫在线观看,流行的娱乐方式之选新闻动态高清画质和流畅的播放是动漫在线观看不可或缺的一部分,许多在线动漫平台提供了高清画质选择,确保观众能够享受到清晰的画面和细腻的动画效果,流畅的播放则保证了观看体验不会被卡顿或缓冲所打断,让观众能够完全沉浸在动漫的世界中。 智能推荐与个性化推荐算法 https://www.mulinrujiao.com/post/12.html
10.蚂蚁金服核心技术:百亿特征实时推荐算法揭秘阿里妹导读:本文来自蚂蚁金服人工智能部认知计算组的基础算法团队,文章提出一整套创新算法与架构,通过对TensorFlow底层的弹性改造,解决了在线学习的弹性特征伸缩和稳定性问题,并以GroupLasso和特征在线频次过滤等自研算法优化了模型稀疏性,在支付宝核心推荐业务获得了uvctr的显著提升,并较大地提升了链路效率。 https://maimai.cn/article/detail?fid=1010621115&efid=mIQCHnkj0zjxlpygUmo5mg
11.美团推荐算法工程师面试题8道4) 在训练神经网络时,通常都会选择小批量梯度下降算法。 SGD方法中的高方差振荡使得网络很难稳定收敛,所以有研究者提出了一种称为动量(Momentum)的技术,通过优化相关方向的训练和弱化无关方向的振荡,来加速SGD训练。 Nesterov梯度加速法,通过使网络更新与误差函数的斜率相适应,并依次加速SGD,也可根据每个参数的重要性https://ask.julyedu.com/detail?id=99017
12.funrec/readme.mdatmaster·SYIX/funFunRec-在线阅读 本教程主要是针对具有机器学习基础并想找推荐算法岗位的同学。教程内容由推荐系统概述、推荐算法基础、推荐系统实战和推荐系统面经四个部分组成。本教程对于入门推荐算法的同学来说,可以从推荐算法的基础到实战再到面试,形成一个闭环。每个部分的详细内容如下: 推荐系统概述。 这部分内容会从推荐系统的https://github.com/SYIX/fun-rec/blob/master/readme.md
13.强化学习与多任务推荐表2 结果证明,TSCAC 方法不仅在主目标 WatchTime 显著优于其他算法,并且在Click,Like,Comment 等指标也取得了最好的效果。注意到 Pareto 优化方法没有主次之分,学到降低 Hate 的一个 pareto 最优点,但是主目标相比 BC 算法负向。 4、在线实验 我们在快手短视频推荐系统进行在线 A/B 实验,基线为 Learning tohttps://www.51cto.com/article/772510.html
14.知道RSS的人越少,我就越希望它能被人知道!1.2 拒绝推荐算法 RSS 的核心是资讯聚合,但远不止此 时至2021年,订阅这种行为,早已不再纯粹,而是被大量的「推荐算法」所侵占 如今只要是个APP,就会被加入「视频流」功能,算是一个很好的例子 不否认推荐算法能有助于我们节约时间,快速发现更多自己感兴趣的内容 https://www.douban.com/note/806636744/
15.九章算法九章算法致力于让顶尖的工程师在线传授最优质的计算机课程,帮助更多程序员找到好工作http://jiuzhang.com/
16.MCA2024升级内容马士兵教育官网本项目基于 Lambda架构的离线与实时计算框架对用户行为数据、业务数据进行采集构建用户画像与商品画像,使用相关推荐算法预测用于与商品之间的关系,为用户进行更加智能的商品推荐。项目中涉及全量、增量业务数据同步、离线用户与商品画像、在线实时召回及热门召回计算,通过Dubbo对外提供推荐服务。整个推荐服务涉及业务库、日志系统https://www.mashibing.com/white_paper/mca
17.短视频内容算法:如何在算法推荐时代引爆短视频.pdf张佳免费在线预览全文 算法推荐时代,内容创作方法论比任何时候都重要。一种与传统逻辑全然不同,却主宰着当今大部分数据流量的游戏规则——基于算法的内容推荐分发,已是大势所趋。如何掘金新流量机会?新战场的游戏规则是什么?什么才是掌控短视频分发“看不见的手”?本书从传播学、心理学、信息学等多学科角度出发,结合一线https://max.book118.com/html/2021/0507/5213132144003224.shtm