什么是深度学习?深度学习的工作原理

深度学习是一种人工智能(AI)方法,用于教计算机以受人脑启发的方式处理数据。深度学习模型可以识别图片、文本、声音和其他数据中的复杂模式,从而生成准确的见解和预测。您可以使用深度学习方法自动执行通常需要人工智能完成的任务,例如描述图像或将声音文件转录为文本。

为什么深度学习很重要?

人工智能(AI)试图训练计算机像人类一样思考和学习。深度学习技术推动了日常产品中使用的许多AI应用程序的发展,例如:

数字助理

声控电视遥控器

欺诈检测

自动面部识别

它也是自动驾驶汽车、虚拟现实等新兴技术的重要组成部分。

深度学习模型是一些计算机文件,数据科学家训练这些文件,以使用算法或一组预定义步骤来执行任务。企业使用深度学习模型在各种应用程序中分析数据并做出预测。

深度学习的作用

深度学习在汽车、航空航天、制造、电子、医学研究和其他领域有很多使用场景。以下是深度学习的一些示例:

自动驾驶汽车使用深度学习模型自动检测路标和行人。

国防系统使用深度学习在卫星图像中自动标记感兴趣的区域。

医学图像分析使用深度学习自动检测癌细胞以进行医学诊断。

工厂使用深度学习应用程序自动检测人员或物体何时位于机器的不安全距离内。

您可以将这些不同的深度学习使用场景分为四大类:计算机视觉、语音识别、自然语言处理(NLP)和推荐引擎。

计算机视觉

计算机视觉是指计算机从图像和视频中提取信息及见解的能力。计算机可以使用深度学习技术来理解图像,就像人类一样。计算机视觉具有多种应用,如下所示:

内容审核,用于从图像和视频归档中自动删除不安全或不适当的内容

面部识别,用于识别面部和多项属性,如睁开的眼睛、眼镜以及面部毛发

图像分类,用于识别品牌徽标、服装、安全装备和其他图像细节

语音识别

深度学习模型可以分析人类语音,尽管说话模式、音调、语气、语言和口音不尽相同。虚拟助手(如AmazonAlexa)和自动转录软件使用语音识别执行以下任务:

帮助呼叫中心座席并对呼叫进行自动分类。

将临床对话实时转换为文档。

为视频和会议记录添加准确的字幕以实现更广泛的内容覆盖范围。

自然语言处理

计算机使用深度学习算法从文本数据和文档中收集见解和意义。这种处理自然的、人工创建的文本的能力有几个使用场景,包括在以下功能中:

自动虚拟座席和聊天机器人

长格式文档(如电子邮件和表格)的业务情报分析

推荐引擎

应用程序可以使用深度学习方法来跟踪用户活动并开发个性化推荐。它们可以分析各种用户的行为,并帮助他们发现新产品或服务。例如,许多媒体和娱乐公司,例如Netflix、Fox和Peacock,都使用深度学习来提供个性化的视频推荐。

深度学习的工作原理

深度学习算法是仿照人脑建模的神经网络。例如,人脑包含数百万个相互关联的神经元,它们协同工作以学习和处理信息。同样,深度学习神经网络(或人工神经网络)是由在计算机内部协同工作的多层人工神经元组成的。

人工神经元是称为节点的软件模块,它使用数学计算来处理数据。人工神经网络是使用这些节点来解决复杂问题的深度学习算法。

深度学习网络有哪些组成部分?

深度神经网络的组成部分如下:

输入层

人工神经网络有几个向其输入数据的节点。这些节点构成了系统的输入层。

隐藏层

输入层处理数据并将其传递到神经网络中更远的层。这些隐藏层在不同层级处理信息,在接收新信息时调整其行为。深度学习网络有数百个隐藏层,可用于从多个不同角度分析问题。

例如,如果您得到了一张必须分类的未知动物的图像,则可以将其与您已经认识的动物进行比较。例如,您可以查看其眼睛和耳朵的形状、大小、腿的数量和毛皮花色。您可以尝试识别图样,如下所示:

动物有蹄,所以它可能是牛或鹿。

动物有猫眼,所以它可能是某种类型的野猫。

深度神经网络中的隐藏层以相同的方式工作。如果深度学习算法试图对动物图像进行分类,则其每个隐藏层都会处理动物的不同特征并尝试对其进行准确的分类。

输出层

输出层由输出数据的节点组成。输出“是”或“否”答案的深度学习模型在输出层中只有两个节点。那些输出更广泛答案的模型则有更多的节点。

机器学习背景下的深度学习是什么?

深度学习是机器学习的子集。深度学习算法的出现是为了提高传统的机器学习技术的效率。传统的机器学习方法需要大量的人力来训练软件。例如,在动物图像识别中,您需要执行以下操作:

手动标记数十万张动物图像。

让机器学习算法处理这些图像。

在一组未知图像上测试这些算法。

找出某些结果不准确的原因。

通过标注新图像来改进数据集,以提高结果准确性。

这个过程称为有监督学习。在监督学习中,只有当您拥有广泛且充分多样化的数据集时,结果准确性才会提高。例如,该算法可能可以准确识别黑猫,但不能准确识别白猫,因为训练数据集包含更多黑猫图像。在这种情况下,您需要标记更多的白猫图像并再次训练机器学习模型。

深度学习相对于机器学习有什么好处?

与传统的机器学习相比,深度学习网络具有以下优势:

高效处理非结构化数据

机器学习方法发现非结构化数据(如文本文档)难以处理,因为训练数据集可能有无限种变化。另一方面,深度学习模型可以理解非结构化数据并进行一般观察,而无需手动提取特征。例如,神经网络可以识别出这两个不同的输入句子具有相同的含义:

您能否告诉我如何付款?

我如何转账?

隐藏的关系和模式发现

深度学习应用程序可以更深入地分析大量数据,并揭示可能尚未对其进行过训练的新见解。例如,考虑一个经过训练以分析消费者购买的深度学习模型。该模型仅包含您已购买的商品的数据。但是,通过将您的购买模式与其他类似客户的购买模式进行比较,人工神经网络可以向您推荐您尚未购买的新物品。

无监督学习

易失性数据处理

易失性数据集具有各种不同的版本。银行的贷款还款额就是其中的一个例子。深度学习神经网络也可以对这些数据进行分类和排序,例如通过分析金融交易并标记其中一些交易以进行欺诈检测。

深度学习面临哪些挑战?

由于深度学习是一项相对较新的技术,因此其实际实施会带来某些挑战。

大量高质量的数据

在大量高质量数据上训练深度学习算法时,可以获得更好的效果。输入数据集中的异常值或错误会显著影响深度学习过程。例如,在我们的动物图像示例中,如果数据集中意外引入了非动物图像,深度学习模型可能会将飞机归类为海龟。

为避免此类错误,必须先清理和处理大量数据,然后再训练深度学习模型。输入数据预处理需要大量的数据存储容量。

处理能力强

云端深度学习有哪些好处?

在云基础架构上运行深度学习算法可以克服其中的许多挑战。您可以使用云中的深度学习更快地设计、开发和训练深度学习应用程序。

速度

可扩展性

使用通过云提供的广泛的按需资源,您可以访问几乎无限的硬件资源来处理任何规模的深度学习模型。您的神经网络可以利用多个处理器,在不同类型和数量的处理器之间无缝、高效地分配工作负载。

THE END
1.如何有效学习算法?算法学习学习算法需要系统性的方法和实践,以下是一些有效的学习步骤和资源建议 基础知识学习: 数学基础:掌握离散数学、概率论、统计学等基础知识 编程基础:熟练掌握至少一种编程语言,如Python、C++、Java等 数据结构与算法基础: 数据结构:学习数组、链表、栈、队列、树、图等数据结构 https://blog.csdn.net/qq_49548132/article/details/140109291
2.9种常见的Python算法,学python有前景吗如果一个解决方案被证明不是一个解时,回溯算法会通过在上一步进行一些更改来丢弃该解决方案,即“回溯”并尝试其他解决方案。以上只是Python中可能存在的算法的一部分。实际上,Python可以用来实现任何类型的算法。学python有前景吗 Python编程语言的潜力还是很大的,Python相对好入门一些,也已经成为数据科学、机器学习、https://baijiahao.baidu.com/s?id=1778564523255716508&wfr=spider&for=pc
3.腾讯Offer已拿,这99道算法高频面试题别漏了,80%都败在算法上我自从2015年担任算法组leader,作为面试官面试了不少同学。前前后后面试了超过200名同学,其中有不少入职的同学后来发展都不错,也坚定了自己对于选人标准的自信心。 今年2020年找工作尤其艰难,我把这些年作为面试官一些重要的面试题整理出来,一共80道,希望能够帮助到大家。 https://maimai.cn/article/detail?fid=1699482551&efid=WqEcULyCOsAoPWgBSGGaFg
4.2019届毕业设计(论文)阶段性汇报近年来,计算机视觉和多尺度快速数值方法成为了研究者关注比较多的领域。毕业设计Gamblet方法在图像与数据分割中的应用包含两个方向,其中一个是使用多尺度快速算法求解在图像分割中的特征根问题,另一个是通过Optimal Recovery的方法得到合适的non-parametric kernel并使用这个kernel在高斯回归中,如此来进行图像分割或者数据分https://zhiyuan.sjtu.edu.cn/html/zhiyuan/announcement_view.php?id=3366
5.太全了!自学机器学习算法学习路线图,有配套视频+实战项目,完全自学机器学习需要学习以下几个主要方面的内容: 一、数学基础线性代数: 【1】理解向量、矩阵的基本运算,如加法、减法、乘法等。 【2】掌握矩阵的特征值与特征向量的概念及计算方法,这在主成分分析等算法中非常关键。 【3】熟悉线性方程组的求解,对于理解线性回归等算法的原理有重要作用。 https://www.bilibili.com/opus/968422981073108994
6.学习,是治愈焦虑的良药只有不断学习、奔跑、更新自己的知识体系,外界发生的变化才不足以影响我们。 相反,如果我们在焦虑的时期选择躺平、摆烂,却不去学习,还抱怨不休,那么我们就会陷入双重困境,无法自拔。 二、建立一套有意识的学习算法 1.人的学习风格天然存在差异 我曾采访过很多人,包括小朋友,发现每个人的学习方法都不一样。在课堂上https://36kr.com/p/2375197738412036
7.万文长字总结“类别增量学习”的前世今生开源工具包三、Continual Learning 有哪些场景? 场景一:Task-IL 任务增量学习,是最简单的Continual Learning的场景。在这种场景下,无论是训练阶段还是测试阶段,模型都被告知了当前的任务ID。 这种特性导致了一些task specific component的方法出现,如packNet[3]提前为每个任务确定卷积的filter的掩码图。再如HAT会动态的根据任务为https://www.thepaper.cn/newsDetail_forward_17451573
8.人工智能快速发展趋势下,中国该如何应对?1、AI芯片针对机器学习算法设计开发,广泛应用于云、边、端各类场景 AI芯片(AI Chip)是一种专门用于处理人工智能相关的计算任务的芯片。它的架构是专门为人工智能算法和应用进行优化的,能够高效地处理大量结构化和非结构化数据。AI芯片能够高效地支持视觉、语音、自然语言处理等智能处理任务。目前,AI芯片主要分为GPU、https://developer.aliyun.com/article/1179745
9.宽度学习(一):宽度学习体系:有效和高效的无需深度架构的增量学习深度学习: 1,时间长:由于涉及到大量的超参数和复杂的结构,大多数神经网络的训练过程非常耗时。 2,重新训练:如果要更改神经网络的结构,或者增加样本,深度学习系统将遇到一个完整的重新训练过程。 宽度学习: 1,消除了训练过程长的缺点,并且提供了很好的泛化能力。 https://cloud.tencent.com/developer/article/2088810
10.关于人工智能的学习经验总结上面讲的是从实用的角度出发,就是我开始一个项目,从项目中学习新知识,但是能出发的前提是有了一个基本的知识框架和基础了。 这个基本的知识应该如何学习呢?或者说跟着课程学习的时候应该如何学习呢? 这里记录一个在课程中学习到的一个高效的学习方法, 称之为MAS方法。 https://www.51cto.com/article/703854.html
11.AI深度强化学习落地方法七步曲2——状态空间篇回报函数篇鉴于强化学习算法对优秀reward函数设计的依赖,学术界提出了很多方法改善这一状况。比如逆向强化学习,利用expert demonstration(专家示范)学习到reward函数,再用这个reward函数训练RL策略。此外,还有一大堆模仿学习的方法,干脆抛开reward直接拟合专家策略。以上方法的前提是要有专家数据,不具备普适性,这里就不多说了。 https://www.shangyexinzhi.com/article/4228946.html
12.力扣(LeetCode)全球极客挚爱的技术成长平台海量技术面试题库,拥有算法、数据结构、系统设计等 1000+题目,帮助你高效提升编程技能,轻松拿下世界 IT 名企 Dream Offer。https://leetcode.cn/
13.精神病学研究中如何进行中小型数据的深度学习鉴于机器学习(尤其是深度学习)的现代算法和方法在其他学科中的出色预测性能,它们为解决这些问题提供了新希望。深度学习算法的优势在于它们可以实现非常复杂的算法,并且原则上可以高效地执行任意预测结果的映射。但是,这种实现是有代价的,需要大量的训练(和测试)样本来推断(有时超过数百万个)模型参数。这似乎与迄今为止在https://www.360doc.cn/mip/955038026.html
14.极客大学·算法训练营从训练营中最大的收获不仅是算法知识,更重要的是一些学习方法和经验 算法训练营即将开班,VIP 学习资料限时免费领取! 基础篇:如何高效学习数据结构与算法 前Facebook 工程师的“三位一体”高效学习法视频课、三张数据结构与算法知识图谱 训练篇:数据结构与算法进阶题库 讲师亲自整理的推荐题目及解法、算法训练营https://time.geekbang.org/college/algorithm/1000332?utm_source=time_web
15.BAT机器学习面试1000题系列(二)109.准备机器学习面试应该了解哪些理论知识? 知乎解答 110.标准化与归一化的区别? 简单来说,标准化是依照特征矩阵的列处理数据,其通过求z-score的方法,将样本的特征值转换到同一量纲下。归一化是依照特征矩阵的行处理数据,其目的在于样本向量在点乘运算或其他核函数计算相似性时,拥有统一的标准,也就是说都转化为“https://www.jianshu.com/p/4a7f7127eef1