人工神经网络(精选5篇)

能否结合分析和归纳的优点设计出一种新的算法,使用近似的先验知识结合可用数据来形成一般假设。这有别于使用纯粹的归纳学习算法时,基于特定学习任务的先验知识来选择设计方案。

例如:在利用神经网络解决问题时,设计者必须选择输入和输出数据的编码方式、在梯度下降中被最小化的误差函数、隐藏单元的数量、网络的拓扑结构、学习速率和冲量等。在选择这些参量时,也可将领域特定的知识嵌入到学习算法中。

KBANN学习方法

将领域理论和训练数据结合起来进行搜索的做法可以将其看作是一种搜索多个可选假设空间的任务。为了将大多数学习任务刻画为搜索算法,需要定义待搜索的假设空间H,搜索的开始点为初始假设ho以及指定搜索目标的判据G。

用这种方法,领域理论B被用于建立一个与B一致的初始假设hO。然后以这个初始假设ho为起点应用标准归纳方法。在设计神经网络网络时可以利用先验知识确定初始网络的互联结构和权值,此初始设计的网络假设利用反向传播算法和训练数据被归纳精华。

利用人工神经网络自动构建应用系统的性能分析模型。以往为应用程序建模主要采用统计分析的方法。但随着应用程序可调参数空间的增大,如果仍使用传统的统计方法建立性能分析模型,必然会对输入参数做简化假设。

这种建模方法只能预测一些粗略的趋势预测,不能顾及每个输入参数对性能的影响,尤其是不能预测在参数空间内各种组合对性能的影响。基于这种现状考虑使用人工神经网络进行性能分析建模。KBANN算法使用先验知识的方法是将假设初始化为完美拟合领域理论,然后按照需要归纳地精华此初始假设以拟合训练数据。

KBANN与纯归纳的反向传播算法比较

理论比较:两者的关键区别在于执行权值调节所基于的初始假设。在有多个假设能拟合数据的情况下,KBANN更有可能收敛到这样的假设,他从训练数据中泛化与领域理论的预测更相似。

另一方面,反向传播收敛到的特定假设可能是小权值的假设,它大致对应在训练样例间平滑插值的泛化偏置。KBANN使用一个领域特定的理论来偏置泛化,反向传播算法使用―个与领域无关的语法偏置。从图例中可以看出KBANN算法效果好于传统的纯归纳反向传播算法。

关键词:人工神经网络;自动化;采煤技术;综放工作面

随着我国国民经济总量的增大,煤炭能源的消耗也是越来与而大,同时也对煤矿的开采提出了更高的要求。近年来,国家对煤矿安全越来越重视,管理也更加严格,很多不合安全规范的小型煤矿被关停。想在现有环境下提高采煤量,就必须加大科技方面的投入,采用最先进的自动化设备技术,宗放自动化采煤是当前世界上最为先进的采煤技术,是提高采煤生产效率的关键技术之一。人工神经系统可以较好的辅助综放工作面的工作,可对综放工作面进行控制生产,对提高采煤效率有着极为重要的意义。

一、人工神经网络的简单介绍

人工神经网络是一种非线性、交叉的科学,它通过计算机系统对生物神经信息进行模拟来解决实际工作中的问题,属于非线性、交叉的科学。经过近些年的发展,人工神经网落技术在自然科学、社会科学等各个领域的应用已经得到广泛应用。人工神经网络的广泛应用自然也推动了人工神经网路的研究,现在出现的具有不同功能作用的网络结构和算法系统,就是近年来研究的成果,人工神经网络的理论系统也日趋成熟,适用范围也越来越广。

通过模拟人体神经系统信号传输原理,人工神经网络的各个节点也与人体内的神经元相似,能够通过连接权值进行非常紧密的联系。在实际应用中,如果神经元的输出大大超过了网络内部神经元阀值的时候,这个人工神经网络就会输出信号,这个信号也就是成为了下个神经元输入的信号。人工神经网络是模拟人的神经系统创建的,自然与人的神经系统很相似,要通过不断的应用、训练才可以保持较为良好的状态,在实际操作中,人工神经网络的性能是由各个节点的激活函数、网络的拓扑结构以及网络的训练方法决定的。较为常用的BP算法就是通过对网络连接权值的不断调整来达到训练人工神经网络的目的。

就现有研究来看,人工神经网络的建模方法主要包括模糊建模和混合建模,这些具体而有效的建模方法给采煤综放工作面生产过程自动化提供了较为科学的理论指导,是提高采煤效率和降低采煤工人劳动强度的有效举措之一,以下是对人工神经网络建模的具体介绍。

(一)人工神经网络的模糊建模方法

(二)人工神经网络的混合建模方法

除了模糊建模方法之外,人工神经网络还有一种混合建模方法,这种建模方法是依托智能算法的进步而出现的,现已广泛应用于煤矿生产。近年来,为了适应人工神经网络的发展,包括粒子群算法和遗传算法在内的智能算法取得了较大的发展,这种建模方可以对实际工作中比较复杂的参数进行优化处理,进而提高生产效率。

1.粒子群算法建模

2.遗传算法

遗传算法就是将计算机技术和进化论联合运用于人工神经网络建模。在实际工作中,遗传算法应用了当前最为先进的编码技术和遗传操来做铺垫。在Holland体系中,GA就是一种较为简单的遗传算法,各种不同形式的二进制串就是其具体的操作对象。但在煤矿工作中,如果是要通过参数来进行问题分析,遗传算法的研究对象就可以是一个参数组,在这个参数组中,遗传算法具体是通过这个参数组的适应度来表现其好坏情况。通常情况下,遗传算法在具体操作中就是通过对基础的参数群进行有效分析,其选择个体是依据这个个体的适应值比例,然后通过交叉和变异进的方法诞生下一个组种群,这个过程可以持续下去,直到满足生产需求的参数值出现为止。遗传算法也是一种优选的方法,它将遗传算法的优点和人工神经网络的特点进行了有机结合,通过遗传算法可以进行前期模块的优选,建立一个合乎现实情况的非线性模型,然后进行与模糊建模方法相类似的实验数据收集,分析最为有效的网络结构,在满足预测的情况下实现了参数的优选。

三、人工神经网络应用在采煤技术上效果

四、结束语

可以将综放工作面看做是整个采煤系统实现自动化,这也是日后采煤自动化发展的一个重要方向,这种思维模式有效避免了在没有考虑综放工作面控制功能而进行自动化的情况。多年的实践表明,神经网络技术应用于煤矿开采中可以有效分析、诊断采煤工作中的一些问题,为日后采煤规划提供了强而有力的依据,其在采煤领域的应用空间还非常宽阔,值得进一步研究、拓展。

参考文献:

[1]郑胜友.人工神经网络在采煤技术上的应用[J].科技风,2012(10).

[2]董丽丽,乔育锋,郭晓山.遗传算法和人工神经网络在煤矿突水预测中的应用研究[A].智能信息技术应用学会.Proceedingsof2010InternationalConferenceonManagementScienceandEngineering(MSE2010)(Volume3)[C].智能信息技术应用学会:,2010(5).

[3]彭学前.采煤机故障诊断与故障预测研究[D].南京理工大学,2013.

【关键词】自适应距离保护人工神经网络BP算法

一、引言

距离保护长期以来一直是复杂电网中高压输电线路最重要的也是应用最广泛的保护方案。这种保护有许多独特的优点,如能瞬时切除输电线80%~90%范围内的各种故障。但是有许多原因会影响阻抗的测量精度,从而影响测量阻抗的计算,使测量阻抗为短路阻抗与附加阻抗之和,从而会引起误动或者拒动。

基于这些问题,本文提出了人工神经网络。近年来,人工神经网络(ANN)逐渐得到电力系统研究人员的高度重视和广泛研究。人工神经网络是由众多的神经元广泛互联而成的网络。人工神经网络以其具有自学习、自适应、较好的容错性和优良的非线性逼近能力,广泛应用于模式识别和模式分类等方面。

本文所采用的三层前向神经网络的学习算法为反传学习算法,即BP算法,学习过程采用反向传播法。

二、基于人工神经网络的距离保护模型

BP网络模型也即多层前向网络(Multi-layerFeedforwardNeuralNetwork,MFNN),因其训练算法采用反向传播算法,也即BP算法。由于这种算法在本质上是一种神经网络学习的数学模型,所以,BP算法也通常暗示着神经网络的拓扑结构是一种无反馈的多层前向网络。

人工神经网络是由大量简单的基本元件——神经元相互连接而成的自适应非线性动态系统。一般而言,只要采用三层神经网络,而且对各层神经元数目不加限制,则可在模式空间构成任意复杂程度的几何图形,从而对任意复杂的对象进行分类。

人工神经网络含有输入层、输出层以及处于输入输出层之间的中间层。中间层有单层或多层,由于他们与外界没有直接联系,故也称为隐层。在隐层中的神经元也称隐单元。隐层虽然和外界不连接,但是他们的状态则影响输入输出之间的关系。BP网络的结构的每一层连接权值都可以通过学习来调节,它的基本处理单元(输入层)除外通常为非线性输入输出关系。

三、神经网络的训练及检验

本文通过EMTP仿真的数据预处理中得出了这两个子网络的权值和阀值矩阵中,用一些不同于训练样本的检测样本(本文在故障检测与选相子网络是用40组进行训练,13组进行检测的;对故障定位子网络是用35组进行训练,14组进行校验的)。每一个子网络的隐含层节点的数目,是在训练过程中根据最快的收敛速度和最好的精度标准通过多次采用不同的隐含层节点数目进行训练,反复比较,根据实际的收敛效果和计算精度来选择确定的。其中,故障检测与选相子网络(ANN1)的隐含层数目取为42个,故障定位子网络(ANN2)的隐含层数目取为33个。

在确定了两个子网络的隐含层以后,开始对故障检测和选相子网络(ANN1)和故障定位子网络(ANN2)采用BP算法进行训练。经过对子网络的多次训练,其训练过程是收敛的,其训练速度也是令人满意。

下面将2个子网络的部分训练样本、检验样本及检验结果。

在对第一个、第二个子网络故障检测与选相子网络其训练过程过程是收敛的,其训练速度也是令人满意的。

下面是子网络ANN1的训练样本和训练样本及检测样本。故障类型有:内部故障,A相接地、内部故障,B相接地、内部故障,C相接地、内部故障,两相短路、内部故障,两相接地短路、内部故障,三相短路。理想输出:1,0,0,0;0,1,0,0;0,0,1,0;0,0,0,1;0,0,0,1;0,0,0,1。检验结果:

0.9985,0.0378,0.0838,0.0230;0.0315,0.9988,0.0607,0.0121;0.1004,0.1718,0.9980,0.2715;0.2815,0.0499,0.0614,0.9864;0.2496,0.3688,0.0370,0.9798;0.0197,0.0551,0.0187,0.9981。

从上面可以清楚的看出,故障检测和选相子网络在各种故障情况下都能正确反映故障,并启动保护和正确选相。

在第二个子网络训练过程也是表明故障定位子网络ANN2也是收敛的,其训练速度也是令人满意的。

下面是故障定位子网络ANN2的训练样本和检验样本及结果举例。当故障点线路全长线路全长83%,故障类型分别为单相接地、两相故障、三相故障时,其理想输出为1、1、1;当故障点线路全长线路全长87%,其理想输出为0、0、0。检测结果:当故障点线路全长线路全长83%,输出:0.9867、0.9827、0.9572。当故障点线路全长线路全长87%,输出:0.1758、0.1820、0.1602。

从上面数据可以看到,故障定位子网络距离保护经过训练以后,基本能够正确的识别故障点位置。

四、结论

本论文针对传统距离保护在系统发生振荡和系统经过过渡电阻发生故障时,可能会误动或拒动等,因此,提出了基于BP人工神经网络自适应距离保护原理由两个相互独立的子网络来实现,即故障检测与选相子网络和故障定位子网络。两个子网络组成一个并行处理系统,经过大量的训练样本进行训练,投入实际运行线路中,根据本身需要提取输电线路的运行参数,对电力系统运行状态进行判断。研究结果表明,用人工神经网络实现最复杂的保护原理——距离保护是可行的,而且具有显著的优点。

[1]贺家李,宋从矩.电力系统继电保护原理(第三版)[M].北京:中国电力出版社,2001.

关键词:神经网络;VC维;数据挖掘

AReviewoftheResearchandDevelopmentoftheArtificialNeuralNets

WANGHui

(XinjiangPetroleumInstitute,Urumqi830000,China)

Abstract:Thispaperreviewsthehistoryandthecurrentsituationofthetheoryofneuralnets.Itdiscussestwoaspects:theVapnik-Chervonenkisdimensioncalculationandthedatamininginneuralnets.Italsotouchesuponsuchresearchareasascalculationtheory,methodsandapplicationofneuralnets.

Keywords:neuralnets;Vapnik-Chervonenkisdimension;DataMining

1引言

本世纪初,科学家们就一直探究大脑构筑函数和思维运行机理。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在计算某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。1943年McCulloch和Pitts结合了神经生理学和数理逻辑的研究描述了一个神经网络的逻辑演算。他们的神经元模型假定遵循一种所谓“有或无”(all-or-none)规则。如果如此简单的神经元数目足够多和适当设置突触连接并且同步操作,McCulloch和Pitts证明这样构成的网络原则上可以计算任何可计算的函数,这标志着神经网络学科的诞生。

2发展历史及现状

2.1人工神经网络理论的形成

早在40年代初,神经解剖学、神经生理学、心理学以及人脑神经元的电生理的研究等都富有成果。其中,神经生物学家McCulloch提倡数字化具有特别意义。他与青年数学家Pitts合作[1],从人脑信息处理观点出发,采用数理模型的方法研究了脑细胞的动作和结构及其生物神经元的一些基本生理特性,他们提出了第一个神经计算模型,即神经元的阈值元件模型,简称MP模型,他们主要贡献在于结点的并行计算能力很强,为计算神经行为的某此方面提供了可能性,从而开创了神经网络的研究。50年代初,神经网络理论具备了初步模拟实验的条件。Rochester,Holland与IBM公司的研究人员合作,他们通过网络吸取经验来调节强度,以这种方式模拟Hebb的学习规则,在IBM701计算机上运行,取得了成功,几乎有大脑的处理风格。但最大规模的模拟神经网络也只有1000个神经元,而每个神经元又只有16个结合点。再往下做试验,便受到计算机的限制。人工智能的另一个主要创始人Minsky于1954年对神经系统如何能够学习进行了研究,并把这种想法写入他的博士论文中,后来他对Rosenblatt建立的感知器(Perceptron)的学习模型作了深入分析。

2.2第一阶段的研究与发展

1958年计算机科学家Rosenblatt基于MP模型,增加了学习机制,推广了MP模型。他证明了两层感知器能够将输入分为两类,假如这两种类型是线性并可分,也就是一个超平面能将输入空间分割,其感知器收敛定理:输入和输出层之间的权重的调节正比于计算输出值与期望输出之差。他提出的感知器模型,首次把神经网络理论付诸工程实现。1960年Widrow和Hoff提出了自适应线性元件ADACINE网络模型,是一种连续取值的线性网络,主要用于自适应系统。他们研究了一定条件下输入为线性可分问题,期望响应与计算响应的误差可能搜索到全局最小值,网络经过训练抵消通信中的回波和噪声,它还可应用在天气预报方面。这是第一个对实际问题起作用的神经网络。可以说,他们对分段线性网络的训练有一定作用,是自适应控制的理论基础。Widrow等人在70年代,以此为基础扩充了ADALINE的学习能力,80年代他们得到了一种多层学习算法。

Holland于1960年在基因遗传算法及选择问题的数学方法分析和基本理论的研究中,建立了遗传算法理论。遗传算法是一种借鉴生物界自然选择和自然遗传机制的高度并行、随机、自适应搜索算法,从而开拓了神经网络理论的一个新的研究方向。1976年Grossberg提出自适应共振理论(ART),这是感知器较完善的模型,即superrised学习方式。本质上说,仍是一种unsuperrised学习方式。随后,他与Carpenter一起研究ART网络,它有两种结构ART1和ART2,能够识别或分类任意多个复杂的二元输入图像,其学习过程有自组织和自稳定的特征,一般认为它是一种先进的学习模型。另外还有Werbos提出的BP理论以及提出的反向传播原理;Fukushima提出了视觉图象识别的Neocognitron模型这些研究成果坚定的神经网络理论的继续研究。

2.3第二次研究的阶段

Hopfield于1982年至1986年提出了神经网络集体运算功能的理论框架,随后,引起许多学者研究Hopfield网络的热潮,对它作改进、提高、补充、变形等,至今仍在进行,推动了神经网络的发展。1983年Kirkpatrick等人先认识到模拟退火算法可应用于NP完全组合优化问题的求解。这种思想最早是由Metropolis等人在1953年提出的,即固体热平衡问题,通过模拟高温物体退火过程的方法,来找全局最优或近似全局最优,并给出了算法的接受准则。这是一种很有效的近似算法。1984年Hinton等人提出了Boltzmann机模型,借用统计物理学中的概念和方法,引入了模拟退火方法,可用于设计分类和学习算法方面,并首次表明多层网络是可训练的。Sejnowski于1986年对它进行了改进,提出了高阶Boltzmann机和快速退火等。

2.4新发展阶段

从上述各个阶段发展轨迹来看,神经网络理论有更强的数学性质和生物学特征,尤其是神经科学、心理学和认识科学等方面提出一些重大问题,是向神经网络理论研究的新挑战,因而也是它发展的最大机会。90年代神经网络理论日益变得更加外向,注视着自身与科学技术之间的相互作用,不断产生具有重要意义的概念和方法,并形成良好的工具。

3神经网络的发展趋势

3.1神经网络VC维计算

神经计算技术已经在很多领域得到了成功的应用,但由于缺少一个统一的理论框架,经验性成分相当高。最近十年里,很多研究者都力图在一个统一的框架下来考虑学习与泛化的问题。PAC(ProbablyApproximatelyCorrect)学习模型就是这样一个框架。作为PAC学习的核心以及学习系统学习能力的度量,VC维(Vapnik-Chervonenkisdimension)在确定神经网络的容量(capacity)、泛化能力(generalization)、训练集规模等的关系上有重要作用。如果可以计算出神经网络的VC维,则我们可以估计出要训练该网络所需的训练集规模;反之,在给定一个训练集以及最大近似误差时,可以确定所需要的网络结构。

Anthony将VC维定义为:设F为一个从n维向量集X到{0,1}的函数族,则F的VC维为X的子集E的最大元素数,其中E满足:对于任意S哿E,总存在函数fs∈F,使得当x∈S时fs(x)=1,x埸S但x∈E时fs(x)=0。

VC维可作为函数族F复杂度的度量,它是一个自然数,其值有可能为无穷大,它表示无论以何种组合方式出现均可被函数族F正确划分为两类的向量个数的最大值。对于实函数族,可定义相应的指示函数族,该指示函数族的VC维即为原实函数族的VC维。

3.2基于神经网络的数据挖掘

1996年,Fayyad、Piatetsky-Shapiro和Smyth对KDD(KnowledgeDiscoveryfromDatabases)和数据挖掘的关系进行了阐述。但是,随着该领域研究的发展,研究者们目前趋向于认为KDD和数据挖掘具有相同的含义,即认为数据挖掘就是从大型数据库的数据中提取人们感兴趣的知识。

数据挖掘的困难主要存在于三个方面:首先,巨量数据集的性质往往非常复杂,非线性、时序性与噪音普遍存在;其次,数据分析的目标具有多样性,而复杂目标无论在表述还是在处理上均与领域知识有关;第三,在复杂目标下,对巨量数据集的分析,目前还没有现成的且满足可计算条件的一般性理论与方法。在早期工作中,研究者们主要是将符号型机器学习方法与数据库技术相结合,但由于真实世界的数据关系相当复杂,非线性程度相当高,而且普遍存在着噪音数据,因此这些方法在很多场合都不适用。如果能将神经计算技术用于数据挖掘,将可望借助神经网络的非线性处理能力和容噪能力,较好地解决这一问题。

4结束语

参考文献:

[1]McCullochWS,PittsW.ALogicalCalculusoftheIdeasImmanentinNervousActivity,BulletinofMathematicalBiophysics,1943.

[2]N.维纳著,郝季仁译,控制论,科学出版,1985.

[3]VonNeumannJ.TheGeneralandLogicalTheoryofAutomata,CerebralMechanismsinBehavior;TheHixonSympsium,1951.

[4]HebbDO.TheOrganizationofBehavior,NewYork:Wiley,1949.

[5]陈世福,陈兆乾.人工智能与知识工程[M].南京:南京大学出版社,1998.

[6]SimonHaykin.神经网络原理[M].机械工业出版社(第二版),2004.

2人工神经网络的基本功能

(1)联想记忆。人工神经网络的设计使其具有分布存储信息和并行计算的功能,所以它能对输入其中的信息和输入的模式有联想记忆的能力。

(3)分类与识别。人工神经网络对输入其中的样本具有分类与识别,能力十分强大和精准,区别于传统分类方法只能局限于同类相聚、异类分离的识别与分类问题,神经网络对非线性曲面的逼近一类问题也有很强的解决能力。

3人工神经网络在经济管理中的应用领域

(1)信贷分析.对于这类型的,信用评估的机构要有特异性的,基于不同申请公司的各自不同的特点,总结出信用判断的条件,即使是这样的复杂,判断失误的机率也是较大的,最终的后果是给信贷机构带来经济和信誉上的损失。而利用计算机科学技术的成果即人工神经网络的评价系统,由于神经网络评价系统的机理是:将需要贷款公司填写的申请表中的关键信息编码为向量输入系统,输出的是公司的实际的信用情况的客观评价,同时还要输入上千例的历史数据对网络进行校正,以提高准确率。这样一方面可给出较为准确和客观的评价结果,另一方面可以避免从事信贷分析的人的主观性造成的错误。正是基于人工神经网络的评价系统的种种优势,故其在在金融风险分析领域应用十分广泛。

THE END
1.神经网络算法BP 神经网络算法在理论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。而且网络的中间层数、各层的处理单元数及网络的学习系数等参数可根据具体情况设定,灵活性很大,在优化、信号处理与模式识别、智能控制、故障诊断等许 多领域都有着广泛的应用前景。工作原理 人工神经元的研究起https://baike.baidu.com/item/%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%AE%97%E6%B3%95/1252235
2.人工神经网络是什么,其应用有哪些?人工神经网络应用人工神经网络是什么,其应用有哪些? 当你阅读这篇文章时,你身体的哪个器官正在考虑它?当然是大脑!但是你知道大脑是如何工作的吗?嗯,它有神经元或神经细胞,它们是大脑和神经系统的主要单位。这些神经元接收来自外部世界的感觉输入,它们对其进行处理,然后提供输出,这些输出可能充当下一个神经元的输入。 https://blog.csdn.net/2401_85782938/article/details/140009671
3.深度学习:从人工神经网络的基础原理到循环神经网络的先进技术本文将深入探讨深度学习中的三种主要神经网络架构:基础人工神经网络(ANN)、卷积神经网络(Convolutional Neural Network, CNN)和循环神经网络(Recurrent Neural Network, RNN)。我们将通过大量的Python代码示例,展示如何构建和训练这些模型,并应用于不同的任务,包括图像分类、文本生成和时间序列预测。https://cloud.tencent.com/developer/article/2471196
4.人工智能与深度学习科研项目:卷积神经网络算法及其在NLP等人工智能领域项目将首先回顾包含分类与回归的传统机器学习算法及初步神经网络,而后教授将会介绍用于优化神经网络的数学原理及代码技术。在确保学生具备扎实的理论及编程基础后,项目将进入到关于卷积神经网络原理、架构、优化及应用的核心阶段,学生将根据自身兴趣选择个性化研究课题进行深入研究,在项目结束时提交项目报告,进行成果展示。 https://www.eol.cn/waiyu/news/2022122099527.html
5.粒子群改进算法及在混合神经网络中的应用研究粒子群改进算法及在混合神经网络中的应用研究,粒子群,混合算法,模拟退火,人工神经网络,混沌自适应,外贸出口,随着学科间的相互交叉、相互渗透和相互促进,研究者开始将各类智能优化算法应用于人工神经网络(ANN)训练。其中,粒子群优化(PShttps://wap.cnki.net/lunwen-1014264041.html
6.基于人工鱼群BP神经网络算法的压力传感器温度补偿研究AET摘要:为实现压力传感器的温度补偿,采用BP神经网络作为压力传感器软件补偿系统的核心算法,但由于BP神经网络算法易陷入局部极值,因此采用具有全局搜索能力的算法—人工鱼群算法(AFSA)进行优化,得到的结果是压力传感器的线性度提升1个数量级,温度灵敏度系数降低2个数量级,得到了很好的补偿效果。 http://www.chinaaet.com/article/3000019793
7.进化算法在人工神经网络中的应用研究会议进化算法在人工神经网络中的应用研究 万琼姚望舒王金根陈世福谢俊元 南京大学计算机软件新技术国家重点实验室 210093 引用 收藏 分享 打印 摘要:本文综述了进化算法与人工神经络结合技术现状的研究,主要包括优化网络设计、输入数据预处理、网络集成等方面内容,并对研究过程中出现的主要问题及未来发展趋势进行了讨论。https://d.wanfangdata.com.cn/Conference/6737541
8.人工神经网络:模型算法及应用PPT课件(全)(406页)人工神经网络:模型、算法及应用-PPT课件(全).pptx,人工神经网络: 模型、算法及应用;2;3;4;1.1 人工神经网络的概念 ;6;1.2 人工神经网络的发展 ;8;1.3 人脑;1.3 人脑;11;1.4 Hebb法则;13;1.5 神经元模型;15;1.6 神经网络的拓扑结构;1.6 神经网络的拓扑结构;18;1.7 知识表https://m.book118.com/html/2022/1222/6140135132005031.shtm
9.大数据在审计中的应用——基于人工神经网络的财务报告舞弊识别因此本文旨在利用大数据技术与人工神经网络算法捕获与目标企业舞弊相关的财务信息和非财务信息,梳理基于数据挖掘的舞弊识别框架,为资本市场注入信心。 1.2 研究意义 大数据在财务领域较多地应用于财务共享服务中心的构建、风险预警、管理决策等方面,并取得了较为丰富的研究成果,但是大数据在财务报告舞弊识别方面的应用研究还处https://www.fx361.com/page/2021/0624/11343477.shtml
10.人工智能心得体会(精选13篇)由于网络技术特别是国际互连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到https://www.oh100.com/a/202212/5696010.html
11.现代工学院郝玉峰课题组:利用人工神经网络算法识别和表征原子级厚度材料现代工学院郝玉峰教授课题组近期将人工神经网络算法与二维材料研究相结合,实现了仅通过光学显微镜照片即可对二维材料的类型、层数、异质结构、缺陷浓度进行快速识别和表征,为二维材料提供了一种高效、无损的检测分析技术。 二维材料是一类仅有原子级厚度的新型薄膜材料。目前二维材料成员已多达几百种,并且各种二维材料会组合https://www.nju.edu.cn/info/3201/116731.htm
12.人工智能论文人工智能;电气工程;自动化控制;应用 当前是一个科学技术时代,电气工程发展要与时俱进,跟上时代前进的脚步。电气工程行业要想有效实现电气自动化控制和管理,就必须充分发挥出人工智能技术的作用。人工智能的研究范围不仅涵盖了图像语言识别和自动化控制,还包括了专家系统和人工神经网络等内容。因此,电力企业必须通过合理利https://www.ruiwen.com/lunwen/6395408.html
13.JeffDean撰文:谷歌AI2018研究成果汇总我们也探讨了强化学习如何应用于神经网络架构搜索之外的其他问题,我们的研究证明它可用于1)自动生成图像变换序列,以提高各种图像模型的准确性。 以及寻找新的符号优化表达式,比常用的优化更新规则更有效。我们在AdaNet上的工作展示了如何得到具有学习能力的快速灵活的AutoML算法。 https://36kr.com/p/1723150434305
14.2022年度陕西省重点研发计划项目申报指南目录2.1 超大规模复数稠密矩阵方程直接求解算法库 2.2 超大规模复数稀疏矩阵方程直接求解算法库 2.3 工业仿真软件架构关键技术 2.4 三维几何建模技术研究 2.5 面网格生成技术 2.6 体网格生成技术 2.7 高性能三维图形渲染技术 2.8 航空大规模并行 CFD 计算技术及应用示范 http://www.kt180.com/html/sxs/9889.html
15.人工智能学习心得(通用28篇)在大多数数学科中存在着几个不同的研究领域,每个领域都有着特有的感兴趣的研究课题、研究技术和术语。在人工智能中,这样的领域包括自然语言处理、自动定理证明、自动程序设计、智能检索、智能调度、机器学习、专家系统、机器人学、智能控制、模式识别、视觉系统、神经网络、agent、计算智能、问题求解、人工生命、人工智能https://www.yjbys.com/xindetihui/fanwen/3342600.html
16.第三代神经网络模型:面向AI应用的脉冲神经网络澎湃号·湃客在这篇文章中,我想从四个方向对生物启发SNN设计的一些实例和思想进行介绍,包括神经元模型、编码方式、学习算法、网络结构,最后总结并展望类脑启发对于面向AI应用的SNN研究的意义。 1. 神经元模型 为了模拟生物神经元的活动模式,计算神经科学提出了一系列脉冲神经元模型。与使用激活函数的人工神经元相比,脉冲神经元普遍https://www.thepaper.cn/newsDetail_forward_27289221