数据科学家必掌握的十大机器学习算法

机器学习已成为数据科学家工具包中重要的工具,并在过去十多年中因其在各种应用中展现出的炫目成果而变得广为人知。要有效地利用机器学习的力量,理解其基本概念及其实际应用至关重要。

接下来我们将探讨数据科学项目中常用的十个机器学习算法。

线性回归(LinearRegression)通过建立输入变量和输出之间的线性关系来预测连续输出。可以想象在图上的一组点中画一条直线。

它通过找到最适合数据点的直线来做出决定。这条直线是通过最小化实际值和直线预测值之间的差异(误差)来确定的。

评估指标

使用Sci-kitLearn及Diabetes数据集,下面代码块中遵循的常见步骤:

逻辑回归(LogisticRegression)用于分类问题。它预测给定数据点属于某一类的概率,如是/否或0/1。它使用逻辑函数输出一个介于0和1之间的值,然后根据阈值(通常为0.5)将该值映射到特定类别。

评估指标:

使用Sci-kitLearn及BreastCancer数据集的应用逻辑回归的步骤:

决策树(DecisionTrees)类似于树状流程图,根据某些条件或特征对数据进行拆分。它们可以应用于回归和分类。决策树的工作原理是使用特征值将数据集拆分成更易管理的子组。每个内部节点表示一个属性测试,每个分支表示测试结果,每个叶节点表示一个类标签(决策)。

使用Sci-kitLearn及Wine数据集进行决策树分类任务。该数据集是关于基于不同属性将葡萄酒分类为三种类型。训练模型、预测葡萄酒类型,并使用分类指标评估模型。

下面代码是基本流程和步骤:

朴素贝叶斯分类器是一类简单的“概率分类器”,使用贝叶斯定理和特征之间强(朴素)独立性假设。它特别适用于文本分类。

它计算每个类别的概率以及给定每个输入值的每个类别的条件概率。这些概率然后用于根据最高概率分类新值。

使用Sci-kitLearn及Digits数据集进行示例:该数据集涉及对手写数字(0-9)的分类。这是一个多类分类问题。下面是训练朴素贝叶斯模型、预测数字类别,并使用分类指标进行评估。以下代码是基本步骤。

机器学习算法里面,最易于理解的回归和分类方法是K-近邻(K-NearestNeighbors,KNN)。一个数据点根据其邻居的分类进行分类。

KNN查看数据点的“K”个最近点(邻居),并根据这些邻居的多数类进行分类。对于回归,它取“K”个最近点的平均值。

使用Sci-kitLearn和Wine数据集,使用KNN模型来分类葡萄酒类型,并使用分类指标评估其性能。以下是基本步骤和代码。

支持向量机(SupportVectorMachines,SVM)是一种强大且多功能的监督学习模型,用于分类和回归任务。它们在处理复杂数据集时表现良好。

SVM在高维空间中构造一个超平面(或一组超平面)来分隔不同的类别。它旨在找到最好的边界(即线和每个类别最近点之间的距离,称为支持向量),以分隔各个类别。

使用Sci-kitLearn及breast_cancer(乳腺癌数据集)进行SVM分类,重点是将肿瘤分类为良性或恶性。下面是基本步骤:

最为常用的回归和分类的集成学习技术是随机森林(RandomForest)。它通过构建多个决策树并将它们组合来提供更可靠和准确的预测。

在随机森林中,每棵树都会做出预测,而模型的预测(对于分类)则属于获得最多投票的类别。对于回归,它取不同树输出的平均值。

使用Sci-kitLearn及breast_cancer(乳腺癌数据集)进行随机森林(RandomForest)分类,重点是将肿瘤分类为良性或恶性。下面是训练随机森林模型、并使用分类指标评估其性能的流程和代码。

K-Means聚类(K-MeansClustering)是一种无监督学习算法,用于将数据分组为“K”个簇。通过确定k个质心,每个数据点被分配到最接近的簇,目标是最小化质心的距离。

该算法将数据点分配到一个簇中,使得数据点和簇的质心之间的平方距离之和最小。簇内数据点的同质性随着簇内方差的减少而增加。

使用Sci-kitLearn及Iris数据集进行K-Means聚类。任务是根据花的测量值将鸢尾花分组为不同的簇。下面是训练模型、分配簇,并评估聚类效果的流程和代码。

主成分分析(PrincipalComponentAnalysis,PCA)是比较经典的降维算法,是将数据转换为一个新的坐标系统,减少变量的数量同时尽可能保留原始数据的变化。

PCA识别出在数据中最大化方差的主成分或轴。第一个主成分捕捉最大的方差,第二个主成分(与第一个正交)捕捉次大的方差,依此类推。

使用Sci-kitLearn及breast_cancer(乳腺癌数据集)进行PCA。该数据集包括从乳腺肿块的细针穿刺(FNA)数字图像中获取的特征,目标是在保留尽可能多的信息的同时,降低数据集的维度。以下是主要的流程和步骤:

梯度提升(GradientBoostingAlgorithms)是一种先进的机器学习技术。它逐步构建多个弱预测模型(通常是决策树)。每个新模型逐渐减少整个系统的损失函数(误差)。

这种技术涉及三个主要组成部分:一个添加模型,用于逐步添加弱学习器以最小化损失函数;一个需要优化的损失函数;以及一个需要生成预测的弱学习器。每棵新树修正前面树所做的错误。

使用Sci-kitLearn及breast_cancer(乳腺癌数据集)进行梯度提升。目标是基于多种特征预测糖尿病的进展。将训练一个梯度提升模型并评估其性能。以下是将要执行的步骤:

简单介绍了数据科学中十种常用的机器学习算法及它们的应用场景。涵盖了从线性回归、逻辑回归到决策树、朴素贝叶斯、K近邻、支持向量机、随机森林和K均值聚类等多个算法的使用方法及评估指标。每种算法都通过具体的示例展示了如何在实际项目中应用,从而帮助读者理解和选择适合的算法解决数据科学问题。

THE END
1.贝叶斯回归代码手写mob6454cc6eb555的技术博客贝叶斯回归代码手写 scikit-learn机器学习五 逻辑回归 朴素贝叶斯 实战:逻辑回归与朴素贝叶斯的比较 20.8.23补充 逻辑回归的定义 逻辑回归中常用的类 损失函数 正则化 逻辑回归的其他重要参数 实战:两种正则化的区别 逻辑回归 逻辑回归中,响应变量描述了结果是正向情况的概率。如果响应变量等于或者超过了一个区分阈值,https://blog.51cto.com/u_16099258/12872530
2.机器学习&深度学习算法及代码实现机器学习代码机器学习&深度学习算法及代码实现 原文地址:https://blog.csdn.net/qq_31456593/article/details/69340697 最近在学机器学习,学习过程中收获颇多,在此留下学习记录,希望与同道中人相互学习交流 最新深度学习教程和相关资源,请关注微信公众号:DoitNLP, 后面我会在DoitNLP上,持续更新深度学习、NLP、Tensorflow的相关教程https://blog.csdn.net/qq_31456593/article/details/69340697
3.十大经典机器学习算法详解及代码实现机器学习领域有许多经典算法,对于初学者来说,全面学习可能有些挑战。以下是十大经典机器学习算法的详细介绍,包括书籍、课件和源代码,供大家参考: 决策树 决策树是一种基于概率的决策分析方法,通过构建决策树来评估项目的风险和可行性。它是一种直观的概率分析图解法。 K均值聚类算法 https://mbd.baidu.com/newspage/data/dtlandingsuper?nid=dt_4130926917743983440
4.源码机器学习算法清单!附Python和R代码附Python和R代码 本文约6000字,建议阅读8分钟。通过本文为大家介绍了3种机器学习算法方式以及10种机器学习算法的清单,学起来吧~ 前言 谷歌董事长施密特曾说过:虽然谷歌的无人驾驶汽车和机器人受到了许多媒体关注,但是这家公司真正的未来在于机器学习,一种让计算机更聪明、更个性化的技术。https://cloud.tencent.com/developer/article/1101907
5.机器学习算法一览(附python和R代码)写这篇文章的目的,就是希望它可以让有志于从事数据科学和机器学习的诸位在学习算法的路上少走些路。我会在文章中举例一些机器学习的问题,你们也可以在思考解决这些问题的过程中得到启发。我也会写下对于各种机器学习算法的一些个人理解,并且提供R和Python的执行代码。读完这篇文章,读者们至少可以行动起来亲手试试写http://www.bibdr.org/nd.jsp?id=56&_ngc=-1&groupId=8
6.机器学习算法及代码实现–决策树大码王机器学习算法及代码实现–决策树 1、决策树 决策树算法的核心在于决策树的构建,每次选择让整体数据香农熵(描述数据的混乱程度)减小最多的特征,使用其特征值对数据进行划分,每次消耗一个特征,不断迭代分类,直到所有特征消耗完(选择剩下数据中出现次数最多的类别作为这堆数据的类别),或剩下的数据全为同一类别,不必继https://www.cnblogs.com/huanghanyu/p/12911803.html
7.在Python中实现决策树算法的示例代码python决策树(Decision Tree)是一种常见的机器学习算法,被广泛应用于分类和回归任务中,并且再其之上的随机森林和提升树等算法一直是表格领域的最佳模型,所以本文将介绍理解其数学概念,并在Python中动手实现,这可以作为了解这类算法的基础知识+ 目录在深入研究代码之前,我们先要了解支撑决策树的数学概念:熵和信息增益https://www.jb51.net/python/294651gm9.htm
8.2020届计算机科学方向毕业设计(论文)阶段性汇报面向机器学习算法的中间语言设计第二次阶段性汇报 介绍当前项目进展,代码功能实现以及相应的演示。 林耘丰 频域激活函数推导与设计 卷积神经网络中包含卷积,池化,激活函数等算子。其中激活函数具有增加网络非线性性,提高模型表达能力的作用。为了在频域上计算神经网络,需要使用频域上的激活函数。本研究将从推导现有激活函数https://zhiyuan.sjtu.edu.cn/html/zhiyuan/announcement_view.php?id=3709
9.R机器学习关键代码机器学习在R语言中是一个广泛的话题,涉及多种算法和包。以下是一些在R中实现机器学习的关键代码示例,包括数据预处理、模型训练、预测和评估: 1. 载入数据和包 # 载入所需的包,如dplyr用于数据处理,ggplot2用于绘图 library(dplyr) library(ggplot2) # 载入数据集 data <- read.csv("data.csv") 2. 数据预https://zhuanlan.zhihu.com/p/693609294
10.腾讯算法岗武功秘籍(上)所以,不要存在侥幸心理,踏踏实实的刷题,复习好常规机器学习算法,尤其是算法的原理和应用场景。 ★ 项目和比赛经历非常的重要,往往面试官都是根据项目里用到的方法拓展提问,对项目的优化和改进也问的比较多。还有就是能内推的一定去找学长学姐或是其它资源去内推。 ★ 面试过程中如果实在写不出来代码的话,就给https://www.flyai.com/article/930
11.教程:AutoML训练无代码分类模型本教程介绍如何在 Azure 机器学习工作室中使用 Azure 机器学习,通过无代码自动化机器学习 (AutoML) 来训练分类模型。 此分类模型预测某个金融机构的客户是否会认购定期存款产品。 利用自动化 ML,可以自动完成耗时密集型任务。 自动机器学习会快速循环访问算法和超参数的多个组合,以帮助你根据所选的成功指标找到最佳模型https://docs.microsoft.com/zh-cn/azure/machine-learning/tutorial-first-experiment-automated-ml
12.TensorFlow机器学习常用算法解析和入门上图为基于ICA的人脸识别模型。实际上这些机器学习算法并不是全都像想象中一样复杂,有些还和高中数学紧密相关。 后面讲给大家一一详细单独讲解这些常用算法。 强化学习 13)Q-Learning算法 Q-learning要解决的是这样的问题:一个能感知环境的自治agent,怎样通过学习选择能达到其目标的最优动作。 https://www.w3cschool.cn/tensorflow/tensorflow-s8uq24ti.html
13.轻松看懂机器学习十大常用算法通过本篇文章可以对ML的常用算法有个常识性的认识,没有代码,没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的,例子主要是分类问题。 每个算法都看了好几个视频,挑出讲的最清晰明了有趣的,便于科普。 以后有时间再对单个算法做深入地解析。 https://www.jianshu.com/p/55a67c12d3e9
14.《常用算法之智能计算(三)》:机器学习计算因为机器学习计算中涉及了大量的统计学理论,机器学习与统计推断的联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习计算关注可以实现的、行之有效的学习算法,很多推论问题具有无程序可循的难度,所以部分的机器学习研究是开发简单、处理容易的近似算法。http://www.kepu.cn/blog/zhangjianzhong/201903/t20190327_475625.html