人工智能机器学习神经网络和深度学习的发展历程(下)模型学习算法神经网络发展

人工智能机器学习神经网络和深度学习发展史

Hello,这里是行上行下

我是隔壁壹脑云准时不拖更的袅袅~

一、前言

在介绍神经网络和深度学习起源之前,首先介绍一下人类大脑是怎么工作的。1981年的诺贝尔医学奖,分发给了DavidHubel、TorstenWiesel和PogerSperry。前两位的主要贡献是发现了人的视觉系统的信息处理是分级的。如下图所示,从视网膜(Retina)出发,经过低级的V1区提取边缘特征,到V2区形成基本形状或目标的局部,再到高层V4形成整个目标(如判定为一张人脸),以及到更高层的PFC(前额叶皮层)进行分类判断等。从视觉处理机制可以看出高层的特征是低层特征的组合,从低层到高层的特征表达越来越抽象和概念化。

这个发现激发了人们对于神经系统的进一步思考。大脑的工作过程是一个对接收信号不断迭代、不断抽象概念化的过程。例如,从原始信号摄入开始(瞳孔摄入像素),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定眼前物体的形状,比如是椭圆形),然后进一步抽象(大脑进一步判定该物体是一张人脸),最后识别人脸。这个过程其实和我们的常识是相吻合的,因为复杂的图形往往就是由一些基本结构组合而成的。同时还可以看出:大脑是一个深度架构,认知过程也是深度的。

而深度学习,恰恰就是通过组合低层特征形成更加抽象的高层特征(或属性类别)。例如,在计算机视觉领域,深度学习算法从原始图像去学习得到一个低层次表达,例如边缘检测器、小波滤波器等,然后在这些低层次表达的基础上,通过线性或者非线性组合,来获得一个高层次的表达。此外,不仅图像存在这个规律,声音也是类似的。

二、起源阶段

1943年,心理学家麦卡洛克和数学逻辑学家皮兹发表论文《神经活动中内在思想的逻辑演算》,提出了MP模型。MP模型是模仿神经元的结构和工作原理,构成出的一个基于神经网络的数学模型,本质上是一种“模拟人类大脑”的神经元模型。MP模型作为人工神经网络的起源,开创了人工神经网络的新时代,也奠定了神经网络模型的基础。当时提出MP模型是希望能够用计算机来模拟人的神经元反应的过程,该模型将神经元的工作过程简化为了三部分:输入信号线性加权,求和,非线性激活(阈值法)。如下图所示:

1945年冯·诺依曼领导的设计小组试制成功存储程序式电子计算机,标志着电子计算机时代的开始。1948年,他在研究工作中比较了人脑结构与存储程序式计算机的根本区别,提出了以简单神经元构成的再生自动机网络结构。但是,指令存储式计算机技术的发展非常迅速,迫使他放弃了神经网络研究的新途径,继续投身于指令存储式计算机技术的研究,并在此领域作出了巨大贡献。虽然,冯·诺依曼的名字是与普通计算机联系在一起的,但他也是人工神经网络研究的先驱之一。

1949年,加拿大著名心理学家唐纳德·赫布在论文《Theorganizationofbehavior》中提出了神经心理学理论。赫布认为神经网络的学习过程最终是发生在神经元之间的突出部位,突触的连接强度随着突触前后神经元的活动而变化,变化的量与两个神经元的活性之和成正比。然后在《行为的组织》中提出了一种基础无监督学习的规则—赫布学习规则(HebbRule)。赫布规则模仿人类认知世界的过程建立一种“网络模型”,该网络模型针对训练集进行大量的训练并提取训练集的统计特征,然后按照样本的相似程度进行分类,把相互之间联系密切的样本分为一类,这样就把样本分成了若干类。赫布规则与“条件反射”机理一致,为以后的神经网络学习算法奠定了基础,具有重大的历史意义。

20世纪50年代末,在MP模型和赫布学习规则的研究基础上,美国科学家罗森布拉特发现了一种类似于人类学习过程的算法—感知机学习。并于1958年,正式提出了由两层神经元组成的神经网络,称之为感知器(Perceptron)。感知器本质上是一种线性模型,可以对输入的训练集数据进行二分类,且能够在训练集中自动更新权值。感知器的提出引起了大量科学家对人工神经网络研究的兴趣,对神经网络的发展具有里程碑式的意义。

在1969年,马文·明斯基和西蒙·派珀特共同编写了一本书籍《感知器》,在书中他们证明了单层感知器无法解决线性不可分问题(例如:异或问题)。由于这个致命的缺陷以及没有及时推广感知器到多层神经网络中,在20世纪70年代,人工神经网络进入了第一个寒冬期,人们对神经网络的研究也停滞了将近20年。

三、发展阶段

真理的果实总是垂青于能够坚持研究的科学家。尽管人工神经网络ANN的研究陷入了前所未有的低谷,但仍有为数不多的学者致力于ANN的研究。

1982年,著名物理学家约翰·霍普菲尔德发明了Hopfield神经网络。Hopfield神经网络是一种结合存储系统和二元系统的循环神经网络。Hopfield网络也可以模拟人类的记忆,根据激活函数的选取不同,有连续型和离散型两种,分别用于优化计算和联想记忆。但由于容易陷入局部最小值的缺陷,该算法并未在当时引起很大的轰动。

1984年,辛顿与年轻学者谢诺夫斯基等合作提出了大规模并行网络学习机,并明确提出隐藏单元的概念,这种学习机后来被称为玻尔兹曼机(Boltzmannmachine)。他们利用统计物理学的概念和方法,首次提出的多层网络的学习算法,称为玻尔兹曼机模型。

1991年BP算法被指出存在梯度消失问题,也就是说在误差梯度后向传递的过程中,后层梯度以乘性方式叠加到前层,由于Sigmoid函数的饱和特性,后层梯度本来就小,误差梯度传到前层时几乎为0,因此无法对前层进行有效的学习,该问题直接阻碍了深度学习的进一步发展。

此外90年代中期,支持向量机算法诞生(SVM算法)等各种浅层机器学习模型被提出,SVM也是一种有监督的学习模型,应用于模式识别,分类以及回归分析等。支持向量机以统计学为基础,和神经网络有明显的差异,支持向量机等算法的提出再次阻碍了深度学习的发展。

四、崛起阶段

2011年,ReLU激活函数被提出,该激活函数能够有效的抑制梯度消失问题。2011年以来,微软首次将DL应用在语音识别上,取得了重大突破。微软研究院和Google的语音识别研究人员先后采用深度神经网络DNN技术降低语音识别错误率至20%~30%,是语音识别领域十多年来最大的突破性进展。

2012年,DNN技术在图像识别领域取得惊人的效果,在ImageNet评测上将错误率从26%降低到15%。在这一年,DNN还被应用于制药公司的DrugeActivity预测问题,并获得世界最好成绩。2012年,在著名的ImageNet图像识别大赛中,杰弗里·辛顿课题组为了证明深度学习的潜力,首次参加ImageNet图像识别比赛,其通过构建的CNN网络AlexNet一举夺得冠军,且碾压第二名(SVM方法)的分类性能。也正是由于该比赛,CNN吸引到了众多研究者的注意。深度学习算法在世界大赛的脱颖而出,也再一次吸引了学术界和工业界对于深度学习领域的注意。

随着深度学习技术的不断进步以及数据处理能力的不断提升,2014年,Facebook基于深度学习技术的DeepFace项目,在人脸识别方面的准确率已经能达到97%以上,跟人类识别的准确率几乎没有差别。这样的结果也再一次证明了深度学习算法在图像识别方面的一骑绝尘。

2016年3月,由谷歌(Google)旗下DeepMind公司开发的AlphaGo(基于深度学习算法)与围棋世界冠军、职业九段棋手李世石进行围棋人机大战,以4比1的总比分获胜;2016年末2017年初,该程序在中国棋类网站上以“大师”(Master)为注册帐号与中日韩数十位围棋高手进行快棋对决,连续60局无一败绩。

参考资料:

1、百度百科,神经网络(通信定义)

阅读链接:

2、百度百科,深度学习(人工神经网络的研究的概念)

3、博客园,《深度学习的起源、发展和现状》

4、博客园,《人工智能、机器学习及深度学习的起源和发展》

5、程序员客栈,《深度学习的起源、发展和挑战总结》

6、CSDN,《人工神经网络简介》

7、腾讯云,《浅谈神经网络发展史:从莫克罗-彼特氏神经模型到深层神经网络》

8、搜狐,《CMU论文:一部深度学习发展史,看神经网络兴衰更替》

11、知乎,《神经网络发展历史》

作者:袅袅

校对:喵君姐姐、TingZhang

不感兴趣

看过了

取消

人点赞

人收藏

打赏

我有话说

0/500

同步到新浪微博

您的申请提交成功

您已认证成功,可享专属会员优惠,买1年送3个月!开通会员,资料、课程、直播、报告等海量内容免费看!

THE END
1.选对学习路线,小白也能搞AI算法开发5. 常用算法学习。卷积算法:初识卷积、卷积的核心原理,矩阵乘算法:矩阵乘,激活函数:激活函数,池化层:池化, softmax分类原理:softmax等。 6. 以上算法几乎是深度学习中最重要最常见的算法,学完之后,可以扩展学习其他算法如:dropout:dropout,交叉熵损失函数:解密熵、交叉熵损失,归一化:批归一化,one-hot 编码:one-https://zhuanlan.zhihu.com/p/644180443
2.交换机如何实现自学习算法交换机可以隔离碰撞域,因此收到了广泛的使用,隔离碰撞域的实现是基于帧交换表,而帧交换表是通过自学习算法自动建立起来的,因此着重考虑自学习算法的实现。 交换机的简单认识 交换机本质上是一个多接口的网桥,自身可以进行碰撞检测并进行转发目的主机,当网桥收到一个帧时,并不是向所有的接口转发此帧,而是先检查此帧https://www.jianshu.com/p/ed03cf24b9b1
3.一种单计算参数的自学习路径规划算法AET一种单计算参数的自学习路径规划算法 0 引言 机器人路径规划(Robot Path Planning,RPP)的主要研究目的是寻找工作空间内的一条从出发点到目标点的运动路径,使机器人可以避开所有障碍物,且路径长度最短。RPP问题的相关研究成果在物流、危险物资传送、大规模集成电路设计等领域中有着广泛的应用[1-5]。在求解RPP问题的http://www.chinaaet.com/article/3000100590
4.自监督学习算法公式自我监督方法这里介绍了一种新的图像表示的自监督学习算法BYOL。BYOL通过预测其输出的以前版本来学习它的表示,而不使用负对。并且展示了BYOL在各种基准测试上取得了最先进的结果。特别是,在使用ResNet-50(1×)的ImageNet线性评估协议下,BYOL实现了一种新的技术,并弥补了自监督方法和的监督学习基线之间的大部分剩余差距。使用Reshttps://blog.51cto.com/u_16099251/10729763
5.自学习策略和Lévy飞行的正弦余弦优化算法首先,提出正弦余弦算法自学习策略和非线性权重因子,使搜索个体记忆自身历史最优位置,在寻优过程中指导搜索个体更新位置,提高SCA的局部搜索能力;算法寻优后期,当搜索陷入局部最优时,采用基于Lévy飞行的停滞扰动策略使算法跳出局部最优,提高SCA的局部最优规避能力。基于13个经典基准测试函数对算法性能进行测试的实验结果表明http://qks.cqu.edu.cn/html/cqdxzrcn/2019/9/20190907.htm
6.基于自适应LASSO先验的稀疏贝叶斯学习算法2.3 基于自适应LASSO 先验SBL 算法的稀疏恢复原理分析 SBL 算法本质是一种鲁棒的最大后验估计方法[2,16].一般通过I 型或II 型估计器稀疏求解[28].本文采用I 型估计器对提出的基于自适应LASSO先验SBL 算法进行分析.I 型估计器为最大化后验分布[28]: https://www.fx361.com/page/2022/0618/14396851.shtml
7.概述机器学习经典算法跟监督学习相反,无监督学习中数据集是完全没有标签的,依据相似样本在数据空间中一般距离较近这一假设, 将样本分类。常见的无监督学习算法包括:稀疏自编码(Sparse Auto Encoder)、主成分分析(Principal Component Analysis, PCA)、K-Means 算法(K 均值算法)、DBSCAN算法(Density-Based Spatial Clustering of Applicationshttps://weibo.com/ttarticle/p/show?id=2309404598738399395890
8.“AI”科普丨一文读懂自注意力机制:8大步骤图解+代码转自 新机器视觉 【导读】NLP领域最近的快速进展离不开基于Transformer的架构,本文以图解+代码的形式,带领读者完全理解self-attention机制及其背后的数学原理,并扩展到Transformer。 BERT, RoBERTa, ALBERT, SpanBERT, DistilBERT, SesameBERT, SemBERT, https://mp.weixin.qq.com/s?__biz=MjM5ODIwNjEzNQ==&mid=2649887658&idx=3&sn=e579f205c683d89a5ed5682102fff792&chksm=bf0ab725ed3b7c7784b043656254cf053b58ff6465d3da485bf72cf4491aa2f106d879cdc90e&scene=27
9.自适应学习率算法AdamW优化器工作原理详解:数学公式和实现AdamW 优化器是Adam优化器的一个变种,它将权重衰减(L2正则化)与Adam优化器结合起来。AdamW的关键在于,它将权重衰减与梯度更新分开处理,这有助于解决L2正则化与自适应学习率算法(如Adam)不兼容的问题。2017 年末,Adam 似乎又重获新生。https://download.csdn.net/blog/column/12592623/136707255
10.自定义深度学习分类·LiDAR360自定义深度学习分类该功能采用深度学习算法对点云数据进行分类。此功能采用监督分类,在同一批次数据中,需要手工编辑少量数据的类别,训练模型后批量处理大量数据。支持两种流程:选择训练样本,生成训练模型,处理待分类数据,利用已有的模型处理待分类数据。采用前后端分离设计(C/S架构),允许局域网内多个用户共用同一服务器下https://www.lidar360.com/wp-content/LiDAR360-zh/ToolReference/Classify/AutoClassifyByDeepLearning.html
11.计算机网络谢希仁笔记数据链路层按照以下自学习算法 处理收到的帧和建立交换表 A 先向 B 发送一帧,从接口 1 进入到交换机。 交换机收到帧后,先查找交换表,没有查到应从哪个接口转发这个帧。 交换机把这个帧的源地址 A 和接口 1 写入交换表中,并向除接口1以外的所有的接口广播这个帧。 https://blog.itpub.net/132/viewspace-2824201/
12.从智障到智能光语音识别就花了100年(全文)手机评测第3页:语音识别实现原理:算法和自学习 第4页:语音识别现状和未来 1离人工智能统治世界还有多远 前不久,中文版Bixby开始公测,虽然这并不是Bixby的首次发布,但却意味着新的语音巨头开始打入中国市场。在我们的测试中发现,Bixby拥有优良的识别率,可以实现语音开锁、语音文本转换,并且用户可以通过语音对手机进行电话短信、https://mobile.zol.com.cn/665/6656792_all.html
13.科学网—[转载]转自:数据标准化/归一化normalization有些模型在各个维度进行不均匀伸缩后,最优解与原来等价,例如logistic regression(因为θ的大小本来就自学习出不同的feature的重要性吧?)。对于这样的模型,是否标准化理论上不会改变最优解。但是,由于实际求解往往使用迭代算法,如果目标函数的形状太“扁”,迭代算法可能收敛得很慢甚至不收敛。所以对于具有伸缩不变性的https://blog.sciencenet.cn/blog-601186-1228314.html
14.用Qlearning算法实现自动走迷宫机器人的方法示例python但不同于监督学习与非监督学习,在强化学习的框架中,我们更侧重通过智能体与环境的交互来学习。通常在监督学习和非监督学习任务中,智能体往往需要通过给定的训练集,辅之以既定的训练目标(如最小化损失函数),通过给定的学习算法来实现这一目标。然而在强化学习中,智能体则是通过其与环境交互得到的奖励进行学习。这个https://www.jb51.net/article/162422.htm
15.见微知著,掩码自监督学习让你一叶知秋腾讯云开发者社区在前面的两篇文章中,我们介绍了基于各类代理任务 (Pretext Task)和基于对比学习 (Contrastive Learning)的自监督学习算法。 随着Vision Transformer (ViT) 在 2021 年霸榜各大数据集,如何基于 ViT 构建更加合适的自监督学习范式成为了该领域的一大问题。最初,DINO 和 MoCo v3 尝试将对比学习和 ViT 相结合,取得了https://cloud.tencent.com/developer/article/1975878