机器学习模型,全面总结!

附注:除了以上两大类模型,还有半监督学习和强化学习等其他类型的机器学习模型。半监督学习是指在有部分标签数据的情况下,结合监督学习和无监督学习的方法进行模型训练。强化学习是指通过让计算机自动与环境交互,学习出如何最大化奖励的策略。

不同的机器学习模型适用于不同的任务和场景。在实际应用中,需要根据具体的问题和数据特点选择合适的模型和方法。同时,机器学习也需要结合具体领域的知识和业务需求来进行深入研究和应用。

有监督学习通常是利用带有专家标注的标签的训练数据,学习一个从输入变量X到输入变量Y的函数映射。Y=f(X),训练数据通常是(n×x,y)的形式,其中n代表训练样本的大小,x和y分别是变量X和Y的样本值。

有监督学习可以被分为两类:

1.11线性回归

线性回归是指完全由线性变量组成的回归模型。在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

1.12逻辑回归

用于研究Y为定类数据时X和Y之间的影响关系情况,如果Y为两类比如0和1(比如1为愿意和0为不愿意,1为购买和0为不购买),此时就叫二元逻辑回归;如果Y为三类以上,此时就称为多分类逻辑回归。

自变量并不一定非要定类变量,它们也可以是定量变量。如果X是定类数据,此时需要对X进行哑变量设置。

1.13Lasso

Lasso方法是一种替代最小二乘法的压缩估计方法。Lasso的基本思想是建立一个L1正则化模型,在模型建立过程中会压缩一些系数和设定一些系数为零,当模型训练完成后,这些权值等于0的参数就可以舍去,从而使模型更为简单,并且有效防止模型过拟合。被广泛用于存在多重共线性数据的拟合和变量选择。

1.14K近邻(KNN)

KNN做回归和分类的主要区别在于最后做预测时候的决策方式不同。KNN做分类预测时,一般是选择多数表决法,即训练集里和预测的样本特征最近的K个样本,预测为里面有最多类别数的类别。KNN做回归时,一般是选择平均法,即最近的K个样本的样本输出的平均值作为回归预测值。但它们的理论是一样的。

1.15决策树

决策树中每个内部节点都是一个分裂问题:指定了对实例的某个属性的测试,它将到达该节点的样本按照某个特定的属性进行分割,并且该节点的每一个后继分支对应于该属性的一个可能值。分类树叶节点所含样本中,其输出变量的众数就是分类结果。回归树的叶节点所含样本中,其输出变量的平均值就是预测结果。

1.16bp神经网络

bp神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。bp神经网络的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的分类错误率最小(误差平方和最小)。

BP神经网络是一种多层的前馈神经网络,其主要的特点是:信号是前向传播的,而误差是反向传播的。具体来说,对于如下的只含一个隐层的神经网络模型:

BP神经网络的过程主要分为两个阶段,第一阶段是信号的前向传播,从输入层经过隐含层,最后到达输出层;第二阶段是误差的反向传播,从输出层到隐含层,最后到输入层,依次调节隐含层到输出层的权重和偏置,输入层到隐含层的权重和偏置。

1.17支持向量机(SVM)

支持向量机回归(SVR)用非线性映射将数据映射到高维数据特征空间中,使得在高维数据特征空间中自变量与因变量具有很好的线性回归特征,在该特征空间进行拟合后再返回到原始空间。

支持向量机分类(SVM)是一类按监督学习方式对数据进行二元分类的广义线性分类器,其决策边界是对学习样本求解的最大边距超平面。

1.18朴素贝叶斯

在给定一个事件发生的前提下,计算另外一个事件发生的概率——我们将会使用贝叶斯定理。假设先验知识为d,为了计算我们的假设h为真的概率,我们将要使用如下贝叶斯定理:

该算法假定所有的变量都是相互独立的。

集成学习是一种将不同学习模型(比如分类器)的结果组合起来,通过投票或平均来进一步提高准确率。一般,对于分类问题用投票;对于回归问题用平均。这样的做法源于“众人拾材火焰高”的想法。

集成算法主要有三类:Bagging,Boosting和Stacking。本文将不谈及stacking。

1.21GBDT

GBDT是以CART回归树为基学习器的Boosting算法,是一个加法模型,它串行地训练一组CART回归树,最终对所有回归树的预测结果加和,由此得到一个强学习器,每一颗新树都拟合当前损失函数的负梯度方向。最后输出这一组回归树的加和,直接得到回归结果或者套用sigmod或者softmax函数获得二分类或者多分类结果。

1.22adaboost

adaboost给予误差率低的学习器一个高的权重,给予误差率高的学习器一个低的权重,结合弱学习器和对应的权重,生成强学习器。回归问题与分类问题算法的不同点在于误差率计算的方式不同,分类问题一般都采用0/1损失函数,而回归问题一般都是平方损失函数或者是线性损失函数。

1.23XGBoost

xgboost是GBDT的一种高效实现,和GBDT不同,xgboost给损失函数增加了正则化项;且由于有些损失函数是难以计算导数的,xgboost使用损失函数的二阶泰勒展开作为损失函数的拟合。

1.24LightGBM

1.25CatBoost

catboost是一种基于对称决策树算法的GBDT框架,主要解决的痛点是高效合理地处理类别型特征和处理梯度偏差、预测偏移问题,提高算法的准确性和泛化能力。

1.26随机森林

随机森林分类在生成众多决策树的过程中,是通过对建模数据集的样本观测和特征变量分别进行随机抽样,每次抽样结果均为一棵树,且每棵树都会生成符合自身属性的规则和分类结果(判断值),而森林最终集成所有决策树的规则和分类结果(判断值),实现随机森林算法的分类(回归)。

1.27ExtraTrees

extra-trees(极其随机的森林)和随机森林非常类似,这里的“及其随机”表现在决策树的结点划分上,它干脆直接使用随机的特征和随机的阈值划分,这样我们每一棵决策树形状、差异就会更大、更随机。

无监督学习问题处理的是,只有输入变量X没有相应输出变量的训练数据。它利用没有专家标注训练数据,对数据的结构建模。

将相似的样本划分为一个簇(cluster)。与分类问题不同,聚类问题预先并不知道类别,自然训练数据也没有类别的标签。

2.11K-means算法

聚类分析是一种基于中心的聚类算法(K均值聚类),通过迭代,将样本分到K个类中,使得每个样本与其所属类的中心或均值的距离之和最小。与分层聚类等按照字段进行聚类的算法不同的是,快速聚类分析是按照样本进行聚类。

2.12分层聚类

分层聚类法作为聚类的一种,是对给定数据对象的集合进行层次分解,根据分层分解采用的分解策略。层次聚类算法按数据分层建立簇,形成一棵以簇为节点的树。如果按自底向上进行层次分解,则称为凝聚的层次聚类,比如AGNES。而按自顶向下的进行层次分解,则称为分裂法层次聚类,比如DIANA。一般用的比较多的是凝聚层次聚类。

降维指减少数据的维度同时保证不丢失有意义的信息。利用特征提取方法和特征选择方法,可以达到降维的效果。特征选择是指选择原始变量的子集。特征提取是将数据从高纬度转换到低纬度。广为熟知的主成分分析算法就是特征提取的方法。

2.21PCA主成分分析

2.22SVD奇异值分解

2.23LDA线性判别

线性判别的原理是将样本投影到一条直线上,使得同类样本的投影点尽可能接近,不同样本的投影点尽可能远离;在对新样本进行分类时,将其投影到同样的直线上,再根据投影点的位置来确定新样本的类别。

上一篇:

下一篇:

14个文本转图像AIAPI

什么是API定义?

前端需要的免费在线API接口

API对现代网上银行至关重要的10个理由

10个搜索引擎结果页面(SERP)API

幂简集成是创新的API接口平台,一站搜索、试用、集成国内外API接口。

THE END
1.强化学习强化学习中,离线策略和在线策略的区别是什么?请从原理和例在强化学习(RL)中,离线策略和在线策略是两种不同的学习和决策方法,它们各有优势和适用场景。 了解这两者的区别有助于选择适合的算法和策略进行有效的学习和决策。 接下来,我们将从原理和例子两个方面对离线策略和在线策略进行详细解释。 原理 1. 离线策略(Off-policy) https://blog.csdn.net/wq6qeg88/article/details/140999201
2.强化学习蒙特卡罗之离线策略在线策略和离线策略,也是观测到 greedy 产生的策略有一定的随机性,不适合做最优策略。策略评估和策略改进能否用两种策略呢?根据答案从而产生了 on-policy 和off-policy 两种方案。 On-policy (在线策略)是指两个过程中使用的是同一个策略。 离线策略 off policy https://www.jianshu.com/p/20feefe77239
3.基于离线策略的电力系统安全稳定在线附加紧急控制方法影响“在线预决策,实时匹配”紧急控制技术推广应用的关键因素之一在于难以对在线策略的适应性进行量化评估,通常还是凭经验预先设定在线策略的适用条件,其可靠性难以保证。[0004]综上所述,基于离线策略的紧急控制在电网大多数运行工况下能够保证电网的安全稳定,但控制策略的精度不高,通常过于保守,控制量过大;基于在线预https://www.xjishu.com/zhuanli/05/CN104779608.html
4.在线帮助信息离线策略,离线操作,生成策略,导入策略,离线过期,离线管理http://www.amoisoft.com/onlinehelp_ld/328.htm
5.一种基于海量策略智能处理平台的全市场多品种金融资管系统.pdf一种基于海量策略智能处理平台的全市场多品种金融资管系统.pdf,本发明公开了一种基于海量策略智能处理平台的全市场多品种金融资管系统,包括:交易平台,数据平台和策略平台。负责策略包括离线策略生产管理子系统和在线策略运行管理子系统,策略平台采用机器学习算法来计算https://max.book118.com/html/2023/1209/5001301144011022.shtm
6.本地谷歌SEO现状:专家们权衡行业特定策略—AdWeb全球站第三个最重要的营销策略是了解你的客户是谁,他们住在哪里,你如何与他们建立联系,以及他们关心什么。从战略的角度来看,您对目标客户的了解越多,您就越能参与到他们所属的当地社区中。对于本地搜索,我认为谷歌希望在在线世界中突出来自离线世界的流行公司。开始专注于建立一个更好的本地品牌。 https://www.adwebcloud.com/www.adwebcloud.com/bdggsxzzjmqhhyt/
7.机器学习:在线学习和离线学习的区别机器学习中的在线学习和离线学习 区别 Online Learning And Offline Learning 第一种理解 在线学习,通常是一次输入一条数据(而不是一个batch),训练完了直接更新权重。一个一个地按照顺序处理数据,但是每一个数据训练完后都会直接更新权重,但不知道是对是错,如果某一次权重更新错误,在这之后的权重更新可能一直都是错https://zhuanlan.zhihu.com/p/269454065
8.墨墨背单词99999破解版安卓2022下载3.量身定制的抗遗忘策略 墨墨背单词对每一个独立的单词依据单词难度和学员个体的记忆差别量身定制专属于每一个学员的记忆规划。在每个单词即将到达遗忘临界点的时候,恰到好处的安排你的下一次复习。 4.自由的词汇添加 墨墨背单词允许你随时添加新的单词到学习列表,甚至一篇自定义文章的单词提取,很好的结合了你平时生https://www.37uu.cn/soft/662666.html
9.智能控制技术范文12篇(全文)由于采集的数据仅覆盖装置所在地附近的区域,无法推算整个系统的运行状态,故如何将电力系统暂态稳定紧急控制模式由现有的“离线计算策略表,实时故障匹配”模式向“在线预决策、实时匹配”的新控制模式发展以及原系统中出现的一些问题与其在新系统中相应的解决方案必须进行深入的研究。https://www.99xueshu.com/w/ikeyve5gy2gl.html
10.电力系统黑启动恢复问题的研究评述文献[54]引入带精英策略的快速非支配排序遗传算法求解多目标输电网架重构模型,较好地避免了求解过程的目标偏好性。文献[55]考虑特级负荷的停电损失,建立了重构过程中的源网荷协同优化模型。文献[26]开发了目标网架与恢复序列统一决策的应急恢复在线决策支持系统。文献[56]提出一种离线训练在线搜索的网架重构实时优化决策https://dgjsxb.ces-transaction.com/fileup/HTML/2022-13-3183.htm
11.读懂数字人民币,这一篇就足够产品笔记DC/EP凭借双离线支付、账户松耦合等技术设计提高我国金融稳定性,增强经济体应对突发状况能力。 助力货币体系降本增效,推动普惠金融 DC/EP可降低货币运营成本,便利货币政策传导,畅通信息数据链条,降低金融服务门槛;提升反洗钱、反恐怖融资、反逃税监管效率,以及满足公众匿名需求。 https://www.shangyexinzhi.com/article/4579724.html
12.我对SLG游戏制作的一些思考随着则服务器到达一定进程后,留存玩家数量会降低。在这个前提下,主旋律是一个人员扩编和整合的过程,以此来保持组织的结构稳定及大地图策略的实施。 当服务器导量人数多时,各个社会阶层的人更容易被吸纳接近现实社会的比例,从而实现小型社会的模拟,达成平衡并维持长期的稳定。最理想的情况是:多个头部的组织,互相形成制https://weibo.com/ttarticle/p/show?id=2309404740343227876427
13.得物AppH5秒开优化实战OSCHINA从点击到路由这部分耗时在线下进行了性能测试,几乎可以忽略不计。 3.2.3 最终线上收益效果 在上述问题解决后,将缓存时间修改为 1 天,发现预请求 HTML 开启状态下可提升 8% 左右的秒开,已经和预加载的效果相差不大了。 3.3 离线包 通过提前将 H5 页面内所需的 css、js 等资源聚合在一个压缩包内,由客户端https://my.oschina.net/u/5783135/blog/5527553
14.科学网—[转载]群视角下的多智能体强化学习方法综述基于学习(深度学习、强化学习)设计的迭代式问题求解方法是离线策略学习的基础范式。由于环境及对手的非平稳性,离线训练的蓝图策略通常很难直接运用于在线对抗。在线博弈对抗过程与离线利用模拟多次对抗学习博弈过程不同,博弈各方处于策略解耦合状态,与离线批(batch)式策略学习方法不同,在线博弈对抗策略的求解本质是一个流https://blog.sciencenet.cn/home.php?mod=space&uid=3472670&do=blog&id=1422698
15.人工智能团队研究成果在TKDE发表:样本高效的离线转在线强化学习该研究提出了一种样本高效的离线转在线强化学习算法,旨在解决两个重要挑战:(1)探索局限性。离线强化学习通常对离线策略评估算法施加严格的限制,以避免采样分布外状态-动作对。由于探索行为策略通常由目标策略派生,这种受限制的预训练策略往往执行保守的动作,使得探索行为策略无法寻找可能产生高奖励并导致长期收益的新颖状态http://icfs.jlu.edu.cn/info/1007/3101.htm
16.线上线下融合教学的优势不足与发展策略内容努力为学生提供高质量,科学的教学服务,以有效满足学生个性发展和全面素质教育的要求。教师应注意,并不是所有的课程都可以使用线上线下混合教学方式进行教学。教师应深入学习教科书,明确学习目标,并为在线和离线学习选择适当的主题。逐步提高自身的信息素养和教学理念,在提高教学质量的同时,确保学生在学习中的核心地位。https://tpd.xhedu.sh.cn/cms/app/info/doc/index.php/92024
17.在对齐AI时,为什么在线方法总是优于离线方法?他们通过消融研究发现,提升离线优化的一种有效方法是生成分布上接近起始 RLHF 策略(这里就刚好是 SFT 策略)的数据,这本质上就模仿了在线算法的起始阶段。 优化性质 该团队发现判别能力和生成能力之间存在一种有趣的相互作用:尽管离线策略的分类能力胜过在线策略,但离线策略生成的响应却更差(见图 6、7、8)。 https://m.thepaper.cn/newsDetail_forward_27434433
18.安秉网盾加密软件让数据安全如影随形离线用户管理(短期):若员工临时出差在外,可以通过离线策略对其进行管理。设置员工离线的时间,比如72小时,当计算机离线大于72小时后,所有加密文件将不能打开。 加解密网关 安全网关对访问服务器的计算机进行严格的身份验证,防止未授权的用户和进程访问服务器获取机密数据。 通过上传解密、下载加密及通讯加密,实现对加密文档https://www.anbingsoft.cn/news/gscyjm/2023/0914/957.html
19.基于优化算法的插电混动PHEV能量管理策略概览目前应用较多的EA 包括粒子群算法(Particle swarm optimization, PSO),遗传算法(Genetic algorithm,GA),拟退火算法(Simulated annealing,SA),蚁群算法(Ant colony optimization, ACO),差分进化算法(Differential evolution, DE)等,针对于PHEV 能量管理问题,该算法现阶段均采用离线运算出最优结果,再与在线策略相结合的机制https://www.yoojia.com/article/9615930982477810013.html
20.河北加密软件透明加密策略 透明加密:在文件创建或编辑过程中自动强制加密,对用户操 作习惯没有任何影响,不需手动输入密码。当文件通过非正常 渠道流至外部,打开时会出现乱码或无法打开,并且始终处于 加密状态。加密过程在操作系统内核完成,保证了加密的高效 性。 半透明加密:用户可以打开加密文件,新建的文件不加密。 解密在线审批https://www.anbingsoft.com/zhuanti/hebei/shijiazhuang/
21.政府采购用户需求书(精选6篇)1)要求提供企业电子档案一体化迁出和迁入功能。适用于企业管辖单位发生变更后,对相应的企业电子档案进行一体化的迁出与迁入管理,具备在线迁移、离线迁移、迁移日志管理等功能。 2)在线迁移提供基于标准FTP网络传输方式的电子档案迁出和迁入功能。3)离线迁移提供基于本地移动存储介质的海量电子档案迁出和迁入功能,专门解决大https://www.360wenmi.com/f/filegkpq2k8e.html
22.悄悄学习Doris,偷偷惊艳所有人ApacheDoris四万字小总结DorisDB 重新定义了 MPP 分布式架构,集群可扩展至数百节点,支持 PB 级数据规模,是当前唯一可以在大数据规模下进行在线弹性扩展的企业级分析型数据库。 DorisDB 还打造了全新的向量化执行引擎,单节点每秒可处理多达 100 亿行数据,查询速度比其他产品快 10-100 倍! https://xie.infoq.cn/article/b2250c2d887f69d8519a3f50b
23.详解经典强化学习算法,搞定“阿尔法狗”下围棋在线策略方法试图评估并提升和环境交互生成数据的策略,而离线策略方法评估和提升的策略与生成数据的策略是不同的。 这表明在线策略方法要求智能体与环境交互的策略和要提升的策略必须是相同的。 而离线策略方法不需要遵循这个约束,它可以利用其他智能体与环境交互得到的数据来提升自己的策略。 https://cloud.tencent.com/developer/article/2280864