神经网络与深度学习西安科技大学

1.什么是神经网络?什么是深度学习?它们和人工智能有何关系?

人工智能的发展经历了逻辑推理、专家系统、机器学习三个阶段。机器学习是人工智能领域中目前最活跃的一个分支,神经网络是机器学习中的一种方法,深度学习又是在神经网络的基础上发展起来的。在最近数年中,计算机视觉、语音识别、自然语言处理、和机器人等领域所取得的惊人的进展,都离不开深度学习,它是这一轮人工智能热潮的核心驱动力量,已经成为人工智能领域最重要的技术之一。深度学习不仅改变了计算领域,也为智能制造、交通物流、医疗健康、文化教育、金融财务、安防警戒、农业、通信、文学/艺术创作等其他多个领域提供了强大的新工具。可以说,深度学习正在、或将要改变科学和人类努力的各个领域。

2.为什么要学习这门课?

近年来,随着大数据的快速积累、计算资源的成熟发展、以及学习算法的发展创新,人工智能技术在多个领域取得重大突破,已经成为经济发展的新引擎,被视为推动现代社会进步的主要核心技术力量之一,它正在为农业、医疗、教育、能源、国防等诸多领域提供大量新的发展机遇。

2017年7月20日,国务院印发《新一代人工智能发展规划》,鼓励高校拓宽人工智能专业教育内容,重视人工智能与数学、计算机科学、物理学、生物学、心理学、社会学、法学等学科专业教育的交叉融合,培养“人工智能×专业”复合型人才。因此,任何专业的学生,都应该掌握一些人工智能的知识。

3.这门课程所采用的深度学习框架是什么?

这门课程主要采用目前最主流的TensorFlow和PyTorch深度学习框架作为实践平台。

TensorFlow就是谷歌公司推出的一款高效的人工智能开源框架,自从2015年11月发布以来,已经成为全世界最广泛使用的深度学习库。很多以前难以实现的大规模人工智能任务,都可以借助它来实现。2019年10月正式发布的TensorFlow2.0版本,是对TensorFlow1.x版本彻底的、革命性的改造,它非常的简单、清晰、好用,并且容易扩展,极大地降低了深度学习编程的门槛,使得普通人也能够体验开发人工智能应用程序的乐趣。随着TensorFlow的发展,一直在更新,先后从1.x更新到2.0、2.4,目前我们课程使用的是TensorFlow2.4版本。

PyTorch是由Facebook开源的神经网络框架,它提供了丰富的工具和库,便于深度学习模型的构建、训练和部署,主要在学术研究领域处于领先地位。同时,PyTorch的代码很简洁、易于使用且内存使用很高效。

4.这门课程的主要内容是什么?学习这门课程后具备什么能力?

课程以神经网络与深度学习的理论及其实例为主线,内容包括Python编程基础、多维数组和数据可视化、TensorFlow2.0/PyTorch深度学习框架基础、回归问题、分类问题、人工神经网络和卷积神经网络。我们将循序渐进、抽丝剥茧的详细介绍算法原理,并为每个重要的理论知识点精心设计了对应的TensorFlow与PyTorch实例,使学习者具备扎实的理论基础和良好的应用能力,能够根据实际任务的需求,合理选择和使用数据,构建、训练和测试模型,并调整模型或参数,优化和改进系统;能够对实验结果进行分析和解释,评估模型精度和误差,具备人工智能应用软件的方案选择、设计和开发能力。

5.这门课提供哪些课程资源?

6.这门课程面向的学习对象?需要有什么基础?

这门课程面向多种学科专业、多层次的学习者。只要具备以下基础,就可以尝试开始学习:

⑴高等数学、线性代数、概率论的基本知识。知道导数、梯度、向量、矩阵、概率等基本概念及运算方法。

⑵学习过“大学计算机基础”或者其他类似的课程,知道计算机系统的基础知识。

⑶学习过任何一门编程语言。了解程序设计的基本方法,能够正确的编写出基本的练习程序。

7.每次开课的内容一样吗?如何查看课程的全部内容?

根据每次开课过程中积累的经验和存在的问题,以及深度学习技术和工具的不断发展,我们的课程一直在持续改进中,每个新的学期,我们都会对课程内容进行适当的调整、更新和补充。其中主要的更新有:

⑴TensorFlow版本的更新:在第2-6次开课中,对TensorFlow安装教程的版本进行多次更新,从1.x版本逐步更新到2.0以及2.4版本。

⑵为所有视频添加了字幕,便于对课程的理解。

⑶内容的补充和完善:在第4-6次开课中,依次补充了卷积神经网络实例、典型的卷积神经网络、AI伦理、TensorFlow.js、TensorFlowLite、PyTorch实例等内容。

⑷不断优化测试题、讨论题和作业题,使其更加贴合课程内容,描述更加严谨规范。

目前正在进行第七次开课,课程每周二更新,如果想要学习最新的课程内容并获得课程证书,建议大家参加第七次课程;如果想提前了解课程的全部内容,可以查看第六次开课。为了便于大家学习,已结束的课程仍然可以浏览课程视频和文档,只是无法提交作业、参与课堂讨论。

8.课程有哪些亮点和特色?

⑴选材先进,理论适度、注重应用实践能力的培养

深度学习是当前人工智能领域最具影响力的研究方向,在各个领域的应用中取得了良好的实践效果。本课程理论适度,并与实践紧密结合,在讲透基本原理讲透的同时,每一个基础理论方法都设计了与之高度匹配的编程实例和作业,。

⑵采用迭代式教学设计,搭建能力提升阶梯

课程遵循“两性一度”标准,采用迭代式教学设计,例如:

①每一个重要的知识点,都提供与之匹配的编程实例以及不断深入的作业题、讨论题和延展题。通过不断提出新的问题,从分析数据、选择属性,到设计模型、优化性能,再到研究性任务,引发学习者自主深入思考。

②在不同的知识点之间,通过对同一个任务的层层迭代,逐渐提升学习者综合运用知识的能力。例如,实例鸢尾花分类、手写数字识别贯穿第6~15讲多个知识点,不断优化;实例波士顿房价回归、鸢尾花分类、手写数字识别、cifar图像分类、猫狗大战等各成系列又层层堆叠优化,帮助学生逐步搭建能力提升阶梯,最终能够设计和实现复杂的人工智能应用。

⑶“高内聚、低耦合”的模块化的内容设计,适用于多层次、多学科专业

面向多元化的社会学习者,将课程内容凝练为高度模块化的80个知识点和25个实例,各模块之间相互独立又相辅相成,不同基础的学习者可以根据实际情况“按需选材,因材施教”。例如,注重理论知识学习的同学,可以忽略实例部分,只浏览理论学习的视频,也是连贯和自成一体的。对于已经掌握理论知识,只是想学习TensorFlow的同学,则可以仅浏览TensorFlow基础和编程实践部分的课程。另外,有一定基础的同学,也可以先完成测试题和作业题,了解自己对知识的掌握情况,然后再根据需要有选择性的浏览课程内容。

由高教社联手网易推出,让每一个有提升愿望的用户能够学到中国知名高校的课程,并获得认证。

THE END
1.学习神经网络的相关网站资源资源浏览查阅110次。自己总结了一些学习神经网络的网站,请大家根据自身情况,选择和参考,更多下载资源、学习资料请访问CSDN文库频道.https://download.csdn.net/download/sinat_41707950/10296928
2.一文搞懂神经网络人工智能是这几年非常火的技术,上至九十九下至刚会走都对人工智能或多或少的了解。神经网络是人工智能的核心,也就是说没有神经网络就没有人工智能,那么这篇文章就带大家学习一下神经网络相关的知识。这篇文章没有数学公式、没有代码,旨在帮助读者快速掌握神经网络的核心知识。 https://www.51cto.com/article/606086.html
3.神经网络和深度学习(NeuralNetworksandDeepLearning)中文pdf内容为时下最火热的神经网络和深度学习,该教程来源于美国Michael Nielsen的个人网站,他致力于把神经网络与深度学习的高深知识以浅显易懂的方式讲解出来,成为众多大牛推荐的必读网络资源之一。国内有识之士把其翻译成中文,方便了广大读者。是不可多得的优质资料! 文章理论坚实,公式推导逻辑严谨,思路清晰,绝对是广大深度https://www.jb51.net/books/585006.html
4.NeuralnetworksanddeeplearningNeural networks, a beautiful biologically-inspired programming paradigm which enables a computer to learn from observational data Deep learning, a powerful set of techniques for learning in neural networks Neural networks and deep learning currently provide the best solutions to many problems in image rehttp://neuralnetworksanddeeplearning.com/
5.机器学习工作室(经典):Net#自定义神经网络在机器学习工作室(经典)中创建的神经网络模型的体系结构可通过使用 Net# 广泛自定义。 您可以:创建隐藏层并控制每层的节点数。 指定如何相互连接层。 定义特殊的连接结构,如卷积和权重共享捆绑。 指定不同的激活函数。有关规范语言语法的详细信息,请参阅 结构规范。https://docs.microsoft.com/zh-cn/azure/machine-learning/studio/azure-ml-netsharp-reference-guide
6.建议所有深度学习炼丹师死磕这四个网站!完全免费小头葱葱2人工智能与Python 35:23 wandb我最爱的炼丹伴侣操作指南 一个有毅力的吃货 42:42:46 吴恩达深度学习 20:23:30 【太全了】从入门到精通一口气学完CNN、RNN、GAN、GNN、DQN、Transformer、LSTM等八大深度学习神经网络!这不比刷剧爽多了! AI算法-漆漆 01:38https://www.bilibili.com/list/ml3161231650?oid=1055299821
7.神经网络与深度学习特别是最近这几年,得益于数据的增多、计算能力的增强、学习算法的成熟以及应用场景的丰富,越来越多的人开始关注这个“崭新”的研究领域:深度学习。深度学习以神经网络为主要模型,一开始用来解决机器学习中的表示学习问题。但是由于其强大的能力,深度学习越来越多地用来解决一些通用人工智能问题,比如推理、决策等。目前,http://nndl.github.io/
8.深度学习入门教程神经网络概述(上)[1] 神经网络概述(上) 2054播放 待播放 [2] 神经网络概述(下) 1346播放 05:42 [3] 神经网络发展史(上) 1540播放 05:48 [4] 神经网络发展史(下) 912播放 05:51 [5] 从0到1-单层感知器(上) 1319播放 09:26 [6] 从0到1-单层感知器(下) https://open.163.com/newview/movie/free?pid=CHHGR9V4D&mid=KHHGRADKT
9.深度学习与神经网络有什么区别?深度学习和神经网络是人工智能领域中的两个重要概念,它们在很多方面有着相似之处,但也存在一些区别。本文将从定义、结构、应用等方面来探讨深度学习与神经网络的区别。 定义 深度学习是一种基于人工神经网络的机器学习算法,在大量数据上训练多层神经网络模型,实现对复杂问题的高效处理。而神经网络则是一种模拟生物神经系https://www.cda.cn/bigdata/201326.html
10.深度学习基础知识(一)激活函数腾讯云开发者社区深度学习基础知识(一)--激活函数 激活函数的意义 在神经网络中加入激活函数存在的意义就是为网络增加非线性因素,比如全卷积神经网络,不加入激活函数,就是一堆线性操作矩阵运算,对于复杂任务仅用线性操作而不用复杂的函数表示肯定效果不会好。 最常用来举例的图https://cloud.tencent.com/developer/article/1990899
11.神经网络3神经网络的学习算法 4神经网络的应用领域 神经元模型 编辑本段 神经网络神经元是神经网络的基本单元,其被设计成类比人类神经元的构造和工作原理。神经元由三个部分组成:树突、细胞体和轴突。树突接受来自其他神经元的电信号,而细胞体会将这些信号进行加权和求和,判断是否要产生输出信号。如果细胞体的加权和大于一https://vebaike.com/doc-view-943.html
12.BrilliantBrilliant是一个在线学习平台,提供Introduction to Neural Networks课程介绍神经网络知识,让学生理解神经网络的基础知识,学习构建和调节神经网络,并应用神经网络解决实际问题。 Introduction to Neural Networks是Brilliant平台上的一门神经网络入门课程。这门课程面向初学者,介绍神经网络的基本概念、模型与算法。学习者可以在这https://www.aizhinan.cn/tools/2320.html
13.动手学深度学习全书的内容分为3个部分:第一部分介绍深度学习的背景,提供预备知识,并包括深度学习最基础的概念和技术;第二部分描述深度学习计算的重要组成部分,还解释近年来令深度学习在多个领域大获成功的卷积神经网络和循环神经网络;第三部分评价优化算法,检验影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言https://www.epubit.com/bookDetails?id=N38286