什么是强化学习?强化学习有哪些框架算法应用?

丰富的线上&线下活动,深入探索云世界

做任务,得社区积分和周边

最真实的开发者用云体验

让每位学生受益于普惠算力

让创作激发创新

资深技术专家手把手带教

遇见技术追梦人

技术交流,直击现场

海量开发者使用工具、手册,免费下载

极速、全面、稳定、安全的开源镜像

开发手册、白皮书、案例集等实战精华

为开发者定制的Chrome浏览器插件

与其他的机器学习算法相比,强化学习最大的特点在于其能够处理连续的、实时的、具有不确定性的环境,因此在许多实际的应用场景中具有很高的实用价值。例如,在机器人控制、游戏策略、自然语言处理等领域中,强化学习已经取得了一系列的重要成果,成为了人工智能领域中不可或缺的一部分。

强化学习的基本框架包括以下几个要素:

在强化学习中,有许多不同的算法可以用来实现智能体的学习过程。其中,最常用的算法包括基于值函数的算法和基于策略的算法。下面简要介绍几种常见的强化学习算法。

Q-learning是一种基于值函数的强化学习算法,其核心思想是通过学习一个状态-行动值函数$Q(s,a)$来指导智能体的决策过程。具体地,Q-learning算法通过迭代的方式更新$Q$函数的估计值,以期最大化长期的总奖励。

Q-learning算法的更新公式如下所示:

$$Q(s,a)\leftarrowQ(s,a)+\alpha[r+\gamma\max_{a'}Q(s',a')-Q(s,a)]$$

其中,$\alpha$是学习率,$r$是当前状态下采取行动$a$所获得的即时奖励,$\gamma$是折扣因子,$s'$是下一个状态,$a'$是在下一个状态下智能体采取的最优行动。

Sarsa是另一种基于值函数的强化学习算法,其核心思想是通过学习一个状态-行动值函数$Q(s,a)$来指导智能体的决策过程。与Q-learning不同的是,Sarsa算法采用了一种基于策略的学习方式,即在每个状态下,智能体会根据当前策略$\pi$采取一个行动$a$,然后观察到下一个状态和获得的奖励,并根据观察到的信息更新自己的策略。

Sarsa算法的更新公式如下所示:

$$Q(s,a)\leftarrowQ(s,a)+\alpha[r+\gammaQ(s',a')-Q(s,a)]$$

其中,$\alpha$是学习率,$r$是当前状态下采取行动$a$所获得的即时奖励,$\gamma$是折扣因子,$s'$是下一个状态,$a'$是在下一个状态下智能体根据当前策略$\pi$采取的行动。

PolicyGradient算法的更新公式如下所示:

$$\theta\leftarrow\theta+\alpha\nabla_\thetaJ(\theta)$$

强化学习在许多领域中都有着广泛的应用。下面介绍几个典型的应用场景。

在游戏AI领域中,强化学习是一种非常有效的学习方式。例如,在AlphaGo和AlphaZero算法中,就采用了基于强化学习的方法来训练模型。这些算法能够在围棋、象棋、国际象棋等复杂的游戏中取得非常高的胜率,甚至超过了人类棋手的水平。

在机器人控制领域中,强化学习也是一种非常有效的学习方式。例如,在机器人足球比赛中,智能体需要学习如何在复杂的环境中进行决策,以期在比赛中取得最高的得分。强化学习可以帮助机器人足球队伍训练出更加智能、灵活的策略,从而在比赛中取得更好的成绩。

在自然语言处理领域中,强化学习也有着广泛的应用。例如,在机器翻译任务中,智能体需要学习如何在一个长句子中进行最优的翻译,以期在整个文档中获得最高的总体译文质量。强化学习可以帮助机器翻译模型训练出更加智能、准确的翻译策略,从而提高整个翻译系统的性能。

THE END
1.学习笔记在线强化学习与离线强化学习的异同(3)强化学习与离线强化学习的区别 强化学习和离线强化学习都是机器学习的分支,主要用于训练智能体以在不断尝试和错误的过程中学习如何最大化累积奖励。它们之间的主要区别在于数据的获取方式和训练环境的不同。 1. 数据获取方式:在强化学习中,智能体通过与环境的交互来获取数据,通过试错的过程来学习最佳策略。这意味着智能https://blog.csdn.net/hzlalb/article/details/136797191
2.机器学习——强化学习与深度强化学习腾讯云开发者社区近年来,强化学习(Reinforcement Learning, RL)在多个领域取得了巨大的进展。从早期简单的迷宫导航问题到今天 AlphaGo 击败围棋世界冠军,强化学习的潜力得到了充分展现。而随着深度学习的引入,深度强化学习(Deep Reinforcement Learning, DRL)更是将这一技术推向了前所未有的高度。本篇文章将深入探讨强化学习与深度强化学习https://cloud.tencent.com/developer/article/2455966
3.在对齐AI时,为什么在线方法总是优于离线方法?根据人类反馈的强化学习(RLHF)随着大型语言模型(LLM)发展而日渐成为一种用于 AI 对齐的常用框架。不过近段时间,直接偏好优化(DPO)等离线方法异军突起 —— 无需主动式的在线交互,使用离线数据集就能直接对齐 LLM。这类方法的效率很高,也已经得到实证研究的证明。但这也引出了一个关键问题: https://m.thepaper.cn/newsDetail_forward_27434433
4.强化学习离线模型离线模型和在线模型强化学习离线模型 离线模型和在线模型,在推荐算法领域,时常会出现模型离线评测效果好,比如AUC、准召等指标大涨,但上线后业务指标效果不佳,甚至下降的情况,比如线上CTR或CVR下跌。本文尝试列举一些常见的原因,为大家排查问题提供一点思路。1.离线、在线特征不一致离线https://blog.51cto.com/u_14499/11815202
5.强化学习的基本概念在线学习和离线学习针对的是在强化学习模型在训练过程中交互数据的使用方式。在线学习的强化学习模型,会在一个交互之后,立即用本次交互得到的经验进行训练。而离线学习的强化学习模型,往往是先将多个交互的经验存储起来,然后在学习的时候,从存储的经验中取出一批交互经验来学习。 https://www.jianshu.com/p/28625d3a60e6
6.离线强化学习因此,离线强化学习(offline reinforcement learning)的目标是,在智能体不和环境交互的情况下,仅从已经收集好的确定的数据集中,通过强化学习算法得到比较好的策略。离线强化学习和在线策略算法、离线策略算法的区别如图 18-1 所示。图18-1 离线强化学习和在线策略算法、离线策略算法的区别https://hrl.boyuai.com/chapter/3/%E7%A6%BB%E7%BA%BF%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0/
7.科学网—[转载]强化学习在资源优化领域的应用强化学习在资源优化领域的应用王金予, 魏欣然, 石文磊, 张佳微软亚洲研究院,北京 100080 摘要:资源优化问题广泛存在于社会、经 ,科学网https://blog.sciencenet.cn/blog-3472670-1312677.html
8.仙启仙启,面向行业专家、企业及研发运营人员的智能决策开发平台。通过数据驱动环境虚拟技术,将复杂的决策过程梳理成可操作的业务流程,并依托云计算资源和深度强化学习算法库,为用户提供智能决策全流程一站式服务.https://www.revive.cn/
9.AIR学术李升波:将强化学习用于自动驾驶:技术挑战与发展趋势或使用模型,或使用预先采集的数据,先离线训练一个最优策略,然后部署到自动驾驶汽车,实现在线控制应用。第二,同时训练和应用策略,即SOTI方法:这是利用强化学习的探索试错机制,通过在线探索环境产生数据,实现自动驾驶策略的在线自我更新。这类方法要求强化学习算法必须进行在线部署,从而进行在线地探索和在线地训练。https://air.tsinghua.edu.cn/info/1008/1323.htm
10.泰语学习App排行榜华为手机泰语学习app推荐莱特葡萄牙语学习背单词软件在你的葡萄牙语学习路上一路相随,贴心定制,一对一服务,随时了解自己的学习进度,解决学习中出现的任何问题,不受时间和空间的限制。学习进度时刻跟进,轻松了解自己的学习情况,省心省力,同时也可以轻松的显示出学习复习进度,便于及时复习强化,学习进度在手,学习计划制定好,葡萄牙语学习不再发愁https://www.diandian.com/phb/1491/
11.多目标排序在快手短视频推荐中的实践复杂多目标:Ensemble Sort和在线自动调参 重排序:Listwise、强化学习和端上重排序 总结和展望 01 快手短视频推荐场景介绍 1. 关于快手 快手主要的流量形态 有4个页面: ① 发现页:致力于让用户看见更大的世界,分为单列和双列两种形态。 双列 点选模式,给用户提供选择的自由 https://maimai.cn/article/detail?fid=1603183032&efid=T7RIoRo14AcJUC_PIXWVhA
12.叶志豪:介绍强化学习及其在NLP上的应用分享总结雷峰网基于价值函数的强化学习,它先通过对现状进行一个价值函数的估计,进而去提升策略,估计这个策略,再重复循环,再估计当前策略下的函数,再用当前价值函数来提升它的策略,两步,第一步估计价值函数,第二步是提升它的策略,这两步一直循环。 基于值的函数分为在线学习和离线学习两种方式,在线学习的代表学习方法是 Sarsa,离线https://www.leiphone.com/news/201807/sbyafpzV4BgvjLT1.html
13.基于深度强化学习的水面无人艇路径跟踪方法6.针对上述现有技术的不足,本发明所要解决的技术问题是:如何提供一种基于深度强化学习的水面无人艇路径跟踪方法,无需进行环境和无人艇运动建模并且具备自适应能力,从而能够进一步提高无人艇路径跟踪控制的稳定性和准确性。 7.为了解决上述技术问题,本发明采用了如下的技术方案: https://www.xjishu.com/zhuanli/54/202210772926.html/
14.反事实增强的对抗学习序列推荐强化学习提供了一种建模上述序列推荐过程的工具, 其思路是将不同的用户反馈信号映射为不同的激励价值, 并通过最大化累积价值激励函数的优化过程, 同时挖掘用户的序列动态兴趣和长时平稳倾向. 尽管, 基于强化学习的推荐系统最近取得成功, 这得益于有效的价值激励函数设计, 但是启发式设计的价值激励函数往往面临区分度https://c-s-a.org.cn/html/2024/4/9470.html