扩散模型如何构建新一代决策智能体?超越自回归,同时生成长序列规划轨迹智能体新浪科技

设想一下,当你站在房间内,准备向门口走去,你是通过自回归的方式逐步规划路径吗?实际上,你的路径是一次性整体生成的。

近期的研究表明,采用扩散模型的规划模块能够同时生成长序列的轨迹规划,这更加符合人类的决策模式。此外,扩散模型在策略表征和数据合成方面也能为现有的决策智能算法提供更优的选择。

扩散模型在强化学习中扮演的角色

轨迹规划

策略表征

扩散规划器更近似传统强化学习中的MBRL,与之相对,将扩散模型作为策略更类似于无模型强化学习。Diffusion-QL首先将扩散策略与Q学习框架结合。由于扩散模型拟合多模态分布的能力远超传统模型,扩散策略在由多个行为策略采样的多模态数据集中表现良好。扩散策略与普通策略相同,通常以状态作为条件生成动作,同时考虑最大化Q(s,a)函数。Diffusion-QL等方法在扩散模型训练时加上加权的价值函数项,而CEP从能量的视角构造加权回归目标,用价值函数作为因子,调整扩散模型学到的动作分布。

数据合成

扩散模型可以作为数据合成器,来缓解离线或在线强化学习中数据稀少的问题。传统强化学习数据增强方法通常只能对原有数据进行小幅扰动,而扩散模型强大的分布拟合能力使其可以直接学习整个数据集的分布,再采样出新的高质量数据。

其他类型

除了以上几类,还有一些零散的工作以其他方式使用扩散模型。例如,DVF利用扩散模型估计值函数。LDCQ首先将轨迹编码到隐空间上,再在隐空间上应用扩散模型。PolyGRAD用扩散模型学习环境动态转移,允许策略和模型交互来提升策略学习效率。

离线强化学习

扩散模型的引入有助于离线强化学习策略拟合多模态数据分布并扩展了策略的表征能力。Diffuser首先提出了基于分类器指导的高奖励轨迹生成算法并启发了大量的后续工作。同时,扩散模型也能应用在多任务与多智能体强化学习场景。

在线强化学习

研究者证明扩散模型对在线强化学习中的价值函数、策略也具备优化能力。例如,DIPO对动作数据重标注并使用扩散模型训练,使策略避免了基于价值引导训练的不稳定性;CPQL则验证了单步采样扩散模型作为策略能够平衡交互时的探索和利用。

模仿学习

模仿学习通过学习专家演示数据来重建专家行为。扩散模型的应用有助于提高策略表征能力以及学习多样的任务技能。在机器人控制领域,研究发现扩散模型能够在保持时序稳定性的条件下预测闭环动作序列。DiffusionPolicy采用图像输入的扩散模型生成机器人动作序列。实验表明扩散模型能够生成有效闭环动作序列,同时保证时序一致性。

轨迹生成

扩散模型在强化学习中的轨迹生成主要聚焦于人类动作生成以及机器人控制两类任务。扩散模型生成的动作数据或视频数据被用于构建仿真模拟器或训练下游决策模型。UniPi训练了一个视频生成扩散模型作为通用策略,通过接入不同的逆动力学模型来得到底层控制命令,实现跨具身的机器人控制。

数据增强

扩散模型还可以直接拟合原始数据分布,在保持真实性的前提下提供多样的动态扩展数据。例如,SynthER和MTDiff-s通过扩散模型生成了训练任务的完整环境转移信息并将其应用于策略的提升,且结果显示生成数据的多样程度以及准确性都优于历史方法。

未来展望

生成式仿真环境

如图1所示,现有研究主要利用扩散模型来克服智能体和经验回放池的局限性,利用扩散模型增强仿真环境的研究比较少。Gen2Sim利用文生图扩散模型在模拟环境中生成多样化的可操作物体来提高机器人精密操作的泛化能力。扩散模型还有可能在仿真环境中生成状态转移函数、奖励函数或多智能体交互中的对手行为。

加入安全约束

通过将安全约束作为模型的采样条件,基于扩散模型的智能体可以做出满足特定约束的决策。扩散模型的引导采样允许通过学习额外的分类器来不断加入新的安全约束,而原模型的参数保持不变,从而节省额外的训练开销。

检索增强生成

组合多种技能

与分类器引导或无分类器引导相结合,扩散模型可以组合多种简单技能来完成复杂任务。离线强化学习中的早期结果也表明扩散模型可以共享不同技能之间的知识,从而有可能通过组合不同技能实现零样本迁移或持续学习。

THE END
1.深度强化学习离线强化学习(OfflineReinforcementLearnin应用场景:在线强化学习适用于那些需要实时决策和快速适应环境变化的任务,比如机器人控制、自动驾驶等。 离线强化学习更侧重于利用预先收集好的数据进行策略学习,而在线强化学习则更侧重于通过与环境的交互实时地学习和优化策略。https://blog.csdn.net/qq_40718185/article/details/139231769
2.机器学习——强化学习与深度强化学习腾讯云开发者社区近年来,强化学习(Reinforcement Learning, RL)在多个领域取得了巨大的进展。从早期简单的迷宫导航问题到今天 AlphaGo 击败围棋世界冠军,强化学习的潜力得到了充分展现。而随着深度学习的引入,深度强化学习(Deep Reinforcement Learning, DRL)更是将这一技术推向了前所未有的高度。本篇文章将深入探讨强化学习与深度强化学习https://cloud.tencent.com/developer/article/2455966
3.在对齐AI时,为什么在线方法总是优于离线方法?根据人类反馈的强化学习(RLHF)随着大型语言模型(LLM)发展而日渐成为一种用于 AI 对齐的常用框架。不过近段时间,直接偏好优化(DPO)等离线方法异军突起 —— 无需主动式的在线交互,使用离线数据集就能直接对齐 LLM。这类方法的效率很高,也已经得到实证研究的证明。但这也引出了一个关键问题: https://m.thepaper.cn/newsDetail_forward_27434433
4.强化学习的基本概念在线学习和离线学习针对的是在强化学习模型在训练过程中交互数据的使用方式。在线学习的强化学习模型,会在一个交互之后,立即用本次交互得到的经验进行训练。而离线学习的强化学习模型,往往是先将多个交互的经验存储起来,然后在学习的时候,从存储的经验中取出一批交互经验来学习。 https://www.jianshu.com/p/28625d3a60e6
5.机器学习中在线学习批量学习迁移学习主动学习的区别电子decremental learning递减学习,即抛弃“价值最低”的保留的训练样本。这两个概念在incremental and decremental svm这篇论文里面可以看到具体的操作过程。 七、在线学习与离线学习offline learning and online learning. In offline learning, the whole training data must be available at the time of model training. http://eetrend.com/node/100016949
6.离线强化学习因此,离线强化学习(offline reinforcement learning)的目标是,在智能体不和环境交互的情况下,仅从已经收集好的确定的数据集中,通过强化学习算法得到比较好的策略。离线强化学习和在线策略算法、离线策略算法的区别如图 18-1 所示。图18-1 离线强化学习和在线策略算法、离线策略算法的区别https://hrl.boyuai.com/chapter/3/%E7%A6%BB%E7%BA%BF%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0/
7.AIR学术李升波:将强化学习用于自动驾驶:技术挑战与发展趋势或使用模型,或使用预先采集的数据,先离线训练一个最优策略,然后部署到自动驾驶汽车,实现在线控制应用。第二,同时训练和应用策略,即SOTI方法:这是利用强化学习的探索试错机制,通过在线探索环境产生数据,实现自动驾驶策略的在线自我更新。这类方法要求强化学习算法必须进行在线部署,从而进行在线地探索和在线地训练。https://air.tsinghua.edu.cn/info/1008/1323.htm
8.仙启仙启,面向行业专家、企业及研发运营人员的智能决策开发平台。通过数据驱动环境虚拟技术,将复杂的决策过程梳理成可操作的业务流程,并依托云计算资源和深度强化学习算法库,为用户提供智能决策全流程一站式服务.https://www.revive.cn/
9.泰语学习App排行榜华为手机泰语学习app推荐莱特葡萄牙语学习背单词软件在你的葡萄牙语学习路上一路相随,贴心定制,一对一服务,随时了解自己的学习进度,解决学习中出现的任何问题,不受时间和空间的限制。学习进度时刻跟进,轻松了解自己的学习情况,省心省力,同时也可以轻松的显示出学习复习进度,便于及时复习强化,学习进度在手,学习计划制定好,葡萄牙语学习不再发愁https://www.diandian.com/phb/1491/
10.叶志豪:介绍强化学习及其在NLP上的应用分享总结雷峰网基于价值函数的强化学习,它先通过对现状进行一个价值函数的估计,进而去提升策略,估计这个策略,再重复循环,再估计当前策略下的函数,再用当前价值函数来提升它的策略,两步,第一步估计价值函数,第二步是提升它的策略,这两步一直循环。 基于值的函数分为在线学习和离线学习两种方式,在线学习的代表学习方法是 Sarsa,离线https://www.leiphone.com/news/201807/sbyafpzV4BgvjLT1.html
11.人工智能一大技术:强化学习(RL)强化学习主要由智能体(Agent)、环境(Environment)、状态(State)和动作(Action)、奖励(Reward)组成。智能体将在环境的当前状态下,根据奖励信号做出动作,从而达到环境中的不同状态并得到奖励。https://www.51cto.com/article/636565.html
12.基于深度强化学习的水面无人艇路径跟踪方法6.针对上述现有技术的不足,本发明所要解决的技术问题是:如何提供一种基于深度强化学习的水面无人艇路径跟踪方法,无需进行环境和无人艇运动建模并且具备自适应能力,从而能够进一步提高无人艇路径跟踪控制的稳定性和准确性。 7.为了解决上述技术问题,本发明采用了如下的技术方案: https://www.xjishu.com/zhuanli/54/202210772926.html/