强化学习图鉴|你与最优策略之间,可能还差一本离线强化学习秘籍

离线强化学习是利用预先收集的大规模静态数据集来训练强化学习智能体的关键,它通常被视为强化学习的一种变体。本文通过回顾诸多强化学习研究,探讨了离线强化学习的训练过程以及其和类似概念的异同。

同时本文也解释了经典强化学习算法在离线设定下的问题和离线强化学习的研究方向并在此基上提出了对离线强化学习的未来展望。该展望将这些研究路径联系起来,为解决分布偏移问题提供了方案。

在训练阶段,OfflineRL无法让智能体与环境进行交互探索。在这个设定下,我们先根据行为策略\(\pi_{\beta}\)\((\mathbf{a}\mid\mathbf{s})\)与环境交互得到数据集\(\mathcal{D}\),然后再利用该数据集训练智能体。以Actor-Critic范式为例,给定数据集\(\mathcal{D}=\left\{(\mathbf{s},\mathbf{a},r,\mathbf{s}^{\prime})\right\}\),我们可以将价值迭代(valueiteration)和策略优化(policyoptimization)表示为:

\(\hat{Q}^{k+1}\leftarrow\arg\min_{Q}\mathbb{E}_{\mathbf{s},\mathbf{a}\sim\mathcal{D}}\left[\left(\hat{\mathcal{B}}^\pi\hat{Q}(\mathbf{s},\mathbf{a})-Q(\mathbf{s},\mathbf{a})\right)^2\right],\\\hat{\pi}^{k+1}\leftarrow\arg\max_{\pi}\mathbb{E}_{\mathbf{s}\sim\mathcal{D},\mathbf{a}\sim\pi^{k}(\mathbf{a}\mid\mathbf{s})}\left[\hat{Q}^{k+1}(\mathbf{s},\mathbf{a})\right]\),

其中,\(\hat{\mathcal{B}}^\pi\)表示遵循策略\(\hat{\pi}\left(\mathbf{a}\mid\mathbf{s}\right)\)的贝尔曼操作符,\(\hat{\mathcal{B}}^\pi\hat{Q}\left(\mathbf{s},\mathbf{a}\right)=\mathbb{E}_{\mathbf{s},\mathbf{a},\mathbf{s}^{\prime}\sim\mathcal{D}}[r(\mathbf{s},\mathbf{a})+\gamma\mathbb{E}_{\mathbf{a}^{\prime}\sim\hat{\pi}^{k}\left(\mathbf{a}^{\prime}\mid\mathbf{s}^{\prime}\right)}\left[\hat{Q}^{k}\left(\mathbf{s}^{\prime},\mathbf{a}^{\prime}\right)\right]]\)

模仿学习(ImitationLearning,IL)也使用静态数据进行训练,且在训练过程中不进行探索,这一点上和OfflineRL是非常相似的。然而,两者也有很多不同之处:

Off-policyRL通常指能够允许产生训练样本的策略(与环境交互的策略)与当前待优化策略不同的一类RL算法。Q-learning算法、利用Q函数的Actor-Critic算法,以及许多基于模型的强化学习算法(Model-basedRL)都属于Off-policyRL。然而,Off-policyRL在学习过程中仍然经常使用额外的交互(即在线数据收集)。

很多前人的研究工作都表明经典强化学习算法在OfflineRL场景表现不佳,甚至很差。论文[6]中表明这是因为在这种情况下,策略倾向于选择偏离数据集\(\mathcal{D}\)的动作(out-of-distribution,OOD)。以基于Q函数的经典算法为例,当待预估数据与离线训练数据分布相同时,Q函数的估计才是准确的,具体的对应关系如下图所示:

THE END
1.强化学习的异同(3)离线强化学习和在线强化学习- 离线强化学习:状态是从历史数据集中提取的特征表示,它用于训练智能体以学习最优策略。这些状态可能包括历史数据中的所有相关信息,但不一定是实时环境中的当前状态。 在线强化学习和离线强化学习在奖励获取方式、评估侧重点、动作选择和状态表示上有所不同,这些区别反映了它们在实际应用中的不同需求和挑战。 https://blog.csdn.net/hzlalb/article/details/136797191
2.强化学习离线模型离线模型和在线模型强化学习离线模型 离线模型和在线模型 在推荐算法领域,时常会出现模型离线评测效果好,比如AUC、准召等指标大涨,但上线后业务指标效果不佳,甚至下降的情况,比如线上CTR或CVR下跌。 本文尝试列举一些常见的原因,为大家排查问题提供一点思路。 1. 离线、在线特征不一致https://blog.51cto.com/u_14499/11815202
3.科学网—[转载]强化学习在资源优化领域的应用当业务环境发生变化时,智能体能够及时地利用数据中蕴含的变化信号,从而更加迅速和敏锐地通过与业务环境的交互重新找到合适的优化方案。鉴于这些特点,近年来强化学习算法结合行业大数据的解决方案在资源优化领域得到越来越多的应用,并取得了一系列优秀的成果。 基于这种行业趋势,本文针对强化学习算法在资源优化领域的应用展开https://blog.sciencenet.cn/blog-3472670-1312677.html
4.2020届计算机科学方向毕业设计(论文)阶段性汇报本文将信息流推荐系统与用户的多步交互过程建模为马尔科夫决策过程,并基于强化学习算法设计动态决定信息流推荐中广告间隔的模型,以优化广告收入与用户参与度指标的综合长期目标。针对在推荐系统场景中部署在线强化学习模型的挑战,本文使用推荐系统的历史日志数据离线训练强化学习策略,并通过实验对相应算法的可行性及效果进行https://zhiyuan.sjtu.edu.cn/html/zhiyuan/announcement_view.php?id=3709
5.强化学习的基本概念强化学习是机器学习领域的一个分支,通过不断的与环境交互,不断的积累经验,最后让Agent学会如何在目标环境中取得最高的得分。在本篇文章中,笔者将介绍一些强化学习的基础知识,文https://www.jianshu.com/p/28625d3a60e6
6.离线强化学习为什么在线强化学习算法没有受到外推误差的影响呢?因为对于在线强化学习,即使训练是离线策略的,智能体依然有机会通过与环境交互及时采样到新的数据,从而修正这些误差。但是在离线强化学习中,智能体无法和环境交互。因此,一般来说,离线强化学习算法要想办法尽可能地限制外推误差的大小,从而得到较好的策略。https://hrl.boyuai.com/chapter/3/%E7%A6%BB%E7%BA%BF%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0/
7.基于深度强化学习的水面无人艇路径跟踪方法6.针对上述现有技术的不足,本发明所要解决的技术问题是:如何提供一种基于深度强化学习的水面无人艇路径跟踪方法,无需进行环境和无人艇运动建模并且具备自适应能力,从而能够进一步提高无人艇路径跟踪控制的稳定性和准确性。 7.为了解决上述技术问题,本发明采用了如下的技术方案: https://www.xjishu.com/zhuanli/54/202210772926.html/
8.大语言模型的拐杖——RLHF基于人类反馈的强化学习强化学习从人类反馈(RLHF)是一种先进的AI系统训练方法,它将强化学习与人类反馈相结合。它是一种通过将人类训练师的智慧和经验纳入模型训练过程中,创建更健壮的学习过程的方法。该技术涉及使用人类反馈创建奖励信号,然后通过强化学习来改善模型的行为。http://wehelpwin.com/article/4042
9.探索(Exploration)还是利用(Exploitation)?强化学习如何tradeoff探索VS 利用,这是强化学习中至关重要的话题。我们希望强化学习中的智能体尽快找到最佳策略。然而,在没有充分探索的情况下就盲目地选择某个策略会带来一定的问题,因为这会导致模型陷入局部最优甚至完全不收敛。https://www.zhuanzhi.ai/document/8c25cb38ff7b6a2acc8610b42ff00fdd
10.ICLR上新强化学习扩散模型多模态语言模型,你想了解的前沿本周,全球最负盛名的人工智能盛会之一 ICLR 大会将在奥地利维也纳举办。所以,今天的“科研上新”将为大家带来多篇微软亚洲研究院在 ICLR 2024 上的精选论文解读,涉及领域涵盖深度强化学习、多模态语言模型、时间序列扩散模型、无监督学习等多个前沿主题。 https://www.msra.cn/zh-cn/news/features/new-arrival-in-research-11