强化学习/智能科学与技术丛书pdf,mobi,epub,txt,百度云盘百度网盘免费下载电子书下载电子版全集免费阅读在线阅读精校版扫描阿里云盘Kindle资源ed2k微盘作者:马可·威宁(MarcoWiering)马丁·范·奥特罗(MartijnvanOtter

马丁范奥特罗(MartijnvanOtterlo)是荷兰奈梅亨大学认知人工智能小组的一员。主要研究领域是强化学习在环境中的知识表示。

1.本书由17位不同领域的专家对强化学习进行了深入而完整的描述,涉及基础理论到高效解决方案框架的各个方面,反映了强化学习主要子领域的研究进展。

2.本书涵盖经典强化学习的完整内容,甚至包括作为深度强化学习萌芽的重要成果DFQ。对于想在强化学习领域进行创新研究的学者而言,本书有助于了解强化学习的发展历史和重要成果,进而找到更有价值的研究课题。

4.本书坚持围绕前沿性和开放性问题,作者在大胆发表自己的真知灼见的同时,不忘客观地反思当前的不足,便于读者辩证地了解领域的发展,跟上领域发展的脚步。

前言ReinforcementLearning:State-of-the-Art强化学习研究者们经常会被学生或同事问:“最近有没有一些强化学习方面的好书可以推荐给我?”

我们编写这本书的目的就是给这个问题提供一个答案。

一本关于强化学习的书10年前上面的问题是很容易回答的,在那个时候,有两本时兴的权威书籍。一本是由RichSutton和AndyBarto在1998年编写的优秀的强化学习导论书籍。这本书从人工智能的角度出发,采用教科书式的写作风格,一直被广泛使用(截至目前引用了一万次)。另一本是1996年由DimitriBertsekas和JohnTsitsiklis撰写的《神经动力学编程》(neuro-dynamicprogramming)。这本书从运筹学的角度出发,以精确的数学方法讲述了动态规划和强化学习,特别强调了求近似解的体系结构。其中Sutton和Barto总是最大化回报,谈及价值函数、回报,并偏向于使用π增加的字母表中的{V,Q,S,A,T,R}部分;而Bertsekas和Tsitsiklis谈及代价函数(cost-to-go-functions),总是最小化成本,并且使用希腊符号μ增加的字母表中的{J,G,I,U}部分。尽管它们有着表面(符号)差异、不同的写作风格和背景,可能这些书的读者也不同,但这两本书都试图对这个令人兴奋的新研究领域进行全面介绍,并成功地做到了这一点。当时运筹学和人工智能方法在行为优化方面的深入合并仍然在进行,这种交叉产生了丰硕的成果。最近,虽然已引入了Q学习和TD学习等强大的思想和算法,但仍有很多未知有待探索。

例如,算法和函数逼近器的组合的收敛问题出现了。包括算法收敛性、保证性能所需的样本数量以及强化学习技术在更大的智能体系结构中的适用性等许多理论和实验问题都没有得到解答。事实上,出现了许多新的问题并导致了越来越多的研究问题,这些都有待聪明的、年轻的博士生们来回答。尽管Sutton和Barto、Bertsekas和Tsitsiklis都很擅长介绍这个领域,并充分地描述了它的基本方法论和问题,但是,这个领域变得如此之大,需要新的教科书来记录所有新的研究进展。所以,这本书就是尝试填补这个空白的。

过去的强化学习指的是1985年以前,在这个阶段,试错学习(trial-and-errorlearning)的思想得到了发展。这个时期强调使用积极探索的学习器(agent,也称智能体),并开发了利用标量回报信号来指定学习器目标的关键思想,称为回报假说。这些方法通常只学习策略,一般不能有效地处理延迟回报。

现在的强化学习指的是价值函数形成的时期。价值函数是强化学习的核心,几乎所有的方法都集中在价值函数的逼近上,以便计算(最优)策略。价值函数假说认为价值函数的逼近是智能化的主要目的。

目前,我们正处于强化学习的未来阶段。Sutton对这个时期的方向做出了预测,并写道:“正如现在强化学习离开回报的最终目标向价值函数迈了一步,未来的强化学习可能会进一步把重点放在研究能够对价值函数进行估计的结构上……在心理学中,积极创造世界的表征的开发思维的方法称为建构主义。我预计在未来几十年中,强化学习将集中在建构主义上。”事实上,正如我们在本书中所看到的那样,这一领域的许多新进展都与能够实现价值函数逼近的新结构有关。此外,许多进展都是关于这些新结构的性能及收敛的性质、能力和保证的。贝叶斯框架、高效线性逼近、关系型知识表示以及分层和多学习器性质的分解都构成了当今强化学习方法中所采用的新结构。

目前强化学习是一个已经确立的研究领域,通常归于机器学习。然而,由于其专注于行为学习,它与心理学、运筹学、数学优化等其他领域有着许多联系。在人工智能领域,它与概率论和决策论规划有很大的重叠,因为它与规划社区(例如国际自动规划系统会议(ICAPS))有许多共同的目标。在最新的国际规划竞赛(IPC)中,源于强化学习文献的方法已经参赛,并且在概率规划问题和最近的“学习规划”(learningforplanning)方面都有着非常好的表现。

尽管强化学习已经为其他许多领域做出了巨大贡献,并且强化学习的论文无处不在,但强化学习领域的现状使得它很自然地在强化学习方法的某个特定焦点上形成论坛。欧洲强化学习研讨会(EWRL)已经逐渐成为这样一个论坛,每隔一年就会有一次相当大的发展,2008年在南锡举办并在2011年与ECML一起举办。此外,IEEE自适应动态规划与强化学习(ADPRL)研讨会也成为研究人员展示和讨论其最新研究成果的一个会议。EWRL和ADPRL一起表明,这一领域已经有了很大的进展,需要有自己的社区和事件。

在强化学习的实践方面以及更重要的是在基准、评估和比较方面也有了很多进展。除了规划比赛(例如IPC)之外,一些强化学习比赛也已成功举办。参赛者不仅在几个经典领域进行竞赛(例如平衡杆),而且在电脑游戏“俄罗斯方块”和“超级马里奥”等新兴领域进行竞赛。这些比赛可以促进代码共享和重用,建立该领域的基准,并用于评估和比较具有挑战性的领域中的算法。另一个代码和解决方案重用的倡导者是RL-Glue框架,它提供了一个抽象的强化学习框架,用于在研究人员之间共享方法。RL-Glue适用于大多数常用的编程语言,从而为实验提供了系统和语言独立的软件框架。比赛和RL-Glue促进了强化学习领域的成熟,使得可以应用更好的科学方法来测试、比较和重用强化学习方法。

本书的目的和目标读者如前所述,我们试图让本书回答这个问题:“你会推荐什么样的书来学习目前的强化学习?”每个可能提出这个问题的人都是本书的潜在读者,这包括博士和硕士生、强化学习的研究人员,以及其他任何想了解强化学习领域的研究人员。书中关于当前强化学习主要研究领域的文献为研究人员提供了一个很好的起点去继续拓展该领域,把强化学习应用到新问题,并将主要的行为学习技术引入到他们自己的智能系统和机器人中。

当我们开始编著本书时,我们首先创建了一个长长的主题列表,并对它们进行了分组,最后选出了近20个比较大的强化学习子领域,这些子领域在过去10年里发布了许多新成果。这些子领域不仅包括比较成熟的子领域(如演进强化学习),还包括更新的主题(如关系型知识表示方法、贝叶斯学习和规划框架)。此外,我们还专门用了一章来介绍分层方法,形成了第一个子领域——它是在前面提到的两本书之后出现的,因此当时没有讨论。

本书的理念是让所有的作者反映这个领域青春和活跃的本质。为此,我们主要选择并邀请了刚开始工作的年轻研究人员。他们中的许多人最近刚获得博士学位,这就确保了他们在自己的强化学习子领域是活跃的专家,并对这个子领域充满了想法和热情。而且,这也给了他们一个在更大的研究领域内推广其子领域研究成果的好机会。此外,我们还邀请了几位经验丰富的研究人员,他们在强化学习的几个子领域取得了先进的研究成果。这一切使得关于这个主题的不同观点得到了很好的结合。正如我们所希望的那样,提交的内容初稿质量非常高。为了有一套确保高质量内容的完整程序,编辑组成员连同一批专家作为审稿人,对每章进行了至少三次审核。成书内容得到了进一步的改进,而且使书中包含了每个子领域的大量的参考文献。

本书的最终版本包含19章,其中第1章包含强化学习的基础知识、动态规划、马尔可夫决策过程和基础的算法(如Q学习和值迭代)。最后一章回顾了书中的内容,讨论了遗漏的东西,并指出了进一步研究的方向。另外,这一章还包含个人对这个领域的思考和预测。构成本书核心的17章中,每一章都是自成一体的,包含对强化学习子领域的介绍和概述。下面我们将会给出本书结构及各章的概要。本书共有30位作者,他们分别来自于不同的机构和不同的国家。

本书结构这本书包含了19篇关于强化学习基础概念和各个子领域的综述,并分为四个主要的类别,我们接下来会对这些类别进行简要的说明。第1章由MartijnvanOtterlo和MarcoWiering执笔,涵盖对基础概念与算法的介绍性材料。这一章讨论马尔可夫决策过程,及其对应的基于模型的和无模型的求解算法。这一章的目的是给读者提供一个快速了解强化学习方法主要构成的概述,同时该章也为其余各章提供了必要的背景知识。本书中的所有综述都建立在第1章的背景介绍的基础之上。本书的最后一章也是由MarcoWiering和MartijnvanOtterlo执笔的,它回顾本书各章的内容,并列举了本书尚未讨论到的主题以及未来的研究发展方向。另外,通过汇总其他章部分作者的简要表述,列举了个人对强化学习领域的一些思考与预测。本书共有六个部分,其主体

THE END
1.多智能体强化学习知乎mob6454cc70863a的技术博客多智能体强化学习知乎 系统简介 基于ROBO-MAS多智能体自主协同高频投影定位系统通过采用ROBO-MAS桌面型群体智能机器人,在小型实验场地内通过高频光电投影定位技术实现机器人位置感知和数据通讯,实现“开放式群体智能研究和多智能体自主协同”的研究目标。 系统为群体智能研究和多机器人任务协同研究搭建基础科研平台,系统完全https://blog.51cto.com/u_16099271/12897860
2.强化学习中的分层强化技术层次强化学习强化学习中的分层强化技术 1. 背景介绍 强化学习是机器学习的一个重要分支,它通过在与环境的交互过程中学习获得最优解决方案的方法,在众多人工智能领域都有广泛的应用,如游戏AI、机器人控制、自动驾驶等。然而,在复杂的环境中,强化学习算法通常需要大量的交互样本和长时间的训练才能收敛到最优策略。为了提高强化学习的https://blog.csdn.net/universsky2015/article/details/137638544
3.2020年媒体技术趋势报告:13大领域89项变革全输出这时,研究者将尝试应用分层强化学习(Hierarchical Reinforcement Learning)——能够发现高水准的行动,有条理地克服学习困难,最终以出乎人类意料的速度掌握新的任务。RL可以提升AI系统的“智能”,来使汽车能在非常规条件下自动驾驶,或者协助军用无人机实现之前尚未实现过的复杂动作。 https://36kr.com/p/5267903
4.万字长文总结如何解决"稀疏奖励(SparseReward)"下的强化学习具体的,利用数据改进 agent 学习的方法包括好奇心驱动(Curiosity Driven)、奖励重塑(Reward Shaping)、模仿学习(Imitation Learning)、课程学习(Curriculum Learning)等等。改进模型的方法主要是执行分层强化学习(Hierarchical Reinforcement Learning),使用多层次的结构分别学习不同层次的策略来提高模型解决复杂问题的能力,以及https://www.zhuanzhi.ai/document/7f6d15f412639a573254a0f80300779a
5.科学网—[转载]强化学习在资源优化领域的应用随着强化学习在围棋、游戏等序列化决策领域大放异彩、在多智能体协作等领域取得较好表现,它的一些优秀特性也得到了资源优化领域的关注。首先,基于强化学习的解决方案决策非常高效。虽然强化学习策略的训练非常耗时,但是这些训练工作可以离线进行,实际中只需要利用训练好的模型进行推理,因而在绝大部分情况下可以做到近似实时https://blog.sciencenet.cn/blog-3472670-1312677.html
6.清华大学交叉信息研究院赵行团队在离线强化学习能够超越专家性能、无需危险环境交互的特性,提出了HsO-VP框架,实现了纯粹基于离线数据的长程运动规划。框架通过变分自编码器(VAE)从离线演示中学习技能,解决自动驾驶中的长期规划问题。设计了双分支序列编码器,有效应对后验坍塌问题。为自动驾驶车辆规划提供了一种新的强化学习方法。 https://iiis.tsinghua.edu.cn/show-10550-1.html
7.翁源县政务服务数据管理局2023年法治政府建设年度报告采用分层学习、考试检验的方式深入学习贯彻习近平总书记重要讲话重要指示精神,深入贯彻落实党的二十大关于法治建设重大部署。一是抓住“关键少数”,充分发挥“头雁效应”。将党的二十大精神、习近平法治思想列入理论学习中心组学习内容。今年通过党组会、理论学习中心组学习法治政府建设相关知识7次。二是全体干部职工学。采取“https://www.wengyuan.gov.cn/zwgk/zwjgk/content/post_2577142.html
8.从搜索到智能客服:阿里开放强化学习技术演进与实践书籍机器之心近日,阿里开放了一本描述强化学习在实践中应用的书籍《强化学习在阿里的技术演进与业务创新》,这本书重点描述了阿里巴巴在推动强化学习输出产品及商业化的实践过程。例如在在搜索场景中对用户的浏览购买行为进行 MDP 建模、在推荐场景中使用深度强化学习与自适应在线学习帮助每?个用户迅速发现宝贝、在智能客服中赋予阿里https://www.jiqizhixin.com/articles/2018-02-06-3
9.论文精读与思考:深度强化学习的组合优化研究进展组合优化“选择决策变量”与深度强化学习的“动作选择”很相似 优势:DRL“离线训练、在线决策”的特性可以解决组合优化中的“实时求解”问题 2.2 目前主要方法 2.2.1 基于DRL的端到端方法 具体方法介绍见第3章 定义:给定问题实例作为输入,利用训练好的深度神经网络直接输出问题的解。网络参数由DRL方法训练得到。 https://www.jianshu.com/p/3887528006d0
10.一文看懂什么是强化学习?(基本概念+应用嘲+主流算法)在线学习 VS 离线学习 详细请查看《强化学习方法汇总》 百度百科和维基百科 百度百科版本 强化学习(reinforcement learning),又称再励学习、评价学习,是一种重要的机器学习方法,在智能控制机器人及分析预测等领域有许多应用。 但在传统的机器学习分类中没有提到过强化学习,而在连接主义学习中,把学习算法分为三种类型,https://easyai.tech/ai-definition/reinforcement-learning/
11.基于“滴滴KDD2018论文:基于强化学习技术的智能派单模型在Paper 中,作者将该问题建模成一个用于解决序列决策的强化学习问题,也就是MDP ( Markov Decision Process )问题。一个 MDP 问题可以用四个最基本的要素描述-状态空间,行为空间,奖励函数和状态转移矩阵。求解 MDP 问题就是给出智能体在某种状态下应该采取哪种动作,以最大化收益。在分单问题中,每个司机看做是独立https://www.infoq.cn/article/1x-QigwOCSqtTFl8RKps/
12.GitHubDeepDriving/DeepLearning5009.6 分层深度强化学习算法 306 9.7 深度记忆强化学习算法 306 9.8 多智能体深度强化学习算法 307 9.9 深度强化学习算法小结 307 第十章 迁移学习 309 10.1 什么是迁移学习? 309 10.2 什么是多任务学习? 309 10.3 多任务学习有什么意义? 309 10.4 什么是端到端的深度学习? 311 https://github.com/DeepDriving/DeepLearning-500-questions
13.AAAI2023工业应用领域内,人工智能研究的最新学术成果本工作关注了两个领域的结合方向,即首先通过离线的方法进行预训练,然后在进行在线学习。研究员们提供了结合这两类方法的一种简单策略:通过对离线数据和在线数据进行区分,在学习的时候采取不同的更新策略来更大限度地提高学习效率。本方法能够便利地应用于当前流行的离线强化学习方法。 https://www.msra.cn/zh-cn/news/features/aaai-2023-industrial-applicable-ai
14.未来智能空战发展综述文献[56-57]提出了启发式思想与强化学习相结合的思路,将专家知识作为启发信号,通过强化学习进行先验知识以外的探索,实现了空战策略启发式探索和随机式探索结合的效果。文献[58]解决了多智能体空战的决策问题,提出了多智能体分层策略梯度算法,通过自博弈对抗学习使智能体涌现出专家级的空战战术策略(如图5所示);此外,还https://www.fx361.com/page/2021/1021/11687486.shtml
15.离线强化学习因此,离线强化学习(offline reinforcement learning)的目标是,在智能体不和环境交互的情况下,仅从已经收集好的确定的数据集中,通过强化学习算法得到比较好的策略。离线强化学习和在线策略算法、离线策略算法的区别如图 18-1 所示。图18-1 离线强化学习和在线策略算法、离线策略算法的区别https://hrl.boyuai.com/chapter/3/%E7%A6%BB%E7%BA%BF%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0/