扩散模型如何构建新一代决策智能体?超越自回归,同时生成长序列规划轨迹智能体新浪科技

设想一下,当你站在房间内,准备向门口走去,你是通过自回归的方式逐步规划路径吗?实际上,你的路径是一次性整体生成的。

近期的研究表明,采用扩散模型的规划模块能够同时生成长序列的轨迹规划,这更加符合人类的决策模式。此外,扩散模型在策略表征和数据合成方面也能为现有的决策智能算法提供更优的选择。

扩散模型在强化学习中扮演的角色

轨迹规划

策略表征

扩散规划器更近似传统强化学习中的MBRL,与之相对,将扩散模型作为策略更类似于无模型强化学习。Diffusion-QL首先将扩散策略与Q学习框架结合。由于扩散模型拟合多模态分布的能力远超传统模型,扩散策略在由多个行为策略采样的多模态数据集中表现良好。扩散策略与普通策略相同,通常以状态作为条件生成动作,同时考虑最大化Q(s,a)函数。Diffusion-QL等方法在扩散模型训练时加上加权的价值函数项,而CEP从能量的视角构造加权回归目标,用价值函数作为因子,调整扩散模型学到的动作分布。

数据合成

扩散模型可以作为数据合成器,来缓解离线或在线强化学习中数据稀少的问题。传统强化学习数据增强方法通常只能对原有数据进行小幅扰动,而扩散模型强大的分布拟合能力使其可以直接学习整个数据集的分布,再采样出新的高质量数据。

其他类型

除了以上几类,还有一些零散的工作以其他方式使用扩散模型。例如,DVF利用扩散模型估计值函数。LDCQ首先将轨迹编码到隐空间上,再在隐空间上应用扩散模型。PolyGRAD用扩散模型学习环境动态转移,允许策略和模型交互来提升策略学习效率。

离线强化学习

扩散模型的引入有助于离线强化学习策略拟合多模态数据分布并扩展了策略的表征能力。Diffuser首先提出了基于分类器指导的高奖励轨迹生成算法并启发了大量的后续工作。同时,扩散模型也能应用在多任务与多智能体强化学习场景。

在线强化学习

研究者证明扩散模型对在线强化学习中的价值函数、策略也具备优化能力。例如,DIPO对动作数据重标注并使用扩散模型训练,使策略避免了基于价值引导训练的不稳定性;CPQL则验证了单步采样扩散模型作为策略能够平衡交互时的探索和利用。

模仿学习

模仿学习通过学习专家演示数据来重建专家行为。扩散模型的应用有助于提高策略表征能力以及学习多样的任务技能。在机器人控制领域,研究发现扩散模型能够在保持时序稳定性的条件下预测闭环动作序列。DiffusionPolicy采用图像输入的扩散模型生成机器人动作序列。实验表明扩散模型能够生成有效闭环动作序列,同时保证时序一致性。

轨迹生成

扩散模型在强化学习中的轨迹生成主要聚焦于人类动作生成以及机器人控制两类任务。扩散模型生成的动作数据或视频数据被用于构建仿真模拟器或训练下游决策模型。UniPi训练了一个视频生成扩散模型作为通用策略,通过接入不同的逆动力学模型来得到底层控制命令,实现跨具身的机器人控制。

数据增强

扩散模型还可以直接拟合原始数据分布,在保持真实性的前提下提供多样的动态扩展数据。例如,SynthER和MTDiff-s通过扩散模型生成了训练任务的完整环境转移信息并将其应用于策略的提升,且结果显示生成数据的多样程度以及准确性都优于历史方法。

未来展望

生成式仿真环境

如图1所示,现有研究主要利用扩散模型来克服智能体和经验回放池的局限性,利用扩散模型增强仿真环境的研究比较少。Gen2Sim利用文生图扩散模型在模拟环境中生成多样化的可操作物体来提高机器人精密操作的泛化能力。扩散模型还有可能在仿真环境中生成状态转移函数、奖励函数或多智能体交互中的对手行为。

加入安全约束

通过将安全约束作为模型的采样条件,基于扩散模型的智能体可以做出满足特定约束的决策。扩散模型的引导采样允许通过学习额外的分类器来不断加入新的安全约束,而原模型的参数保持不变,从而节省额外的训练开销。

检索增强生成

组合多种技能

与分类器引导或无分类器引导相结合,扩散模型可以组合多种简单技能来完成复杂任务。离线强化学习中的早期结果也表明扩散模型可以共享不同技能之间的知识,从而有可能通过组合不同技能实现零样本迁移或持续学习。

THE END
1.ReinforcementLearning)和在线强化学习(OnlineReinforcementLearnin训练过程:在在线强化学习中,代理程序通过与环境的交互不断地收集数据,并即时地使用这些数据来更新策略,以逐步优化其性能。 应用场景:在线强化学习适用于那些需要实时决策和快速适应环境变化的任务,比如机器人控制、自动驾驶等。 离线强化学习更侧重于利用预先收集好的数据进行策略学习,而在线强化学习则更侧重于通过与环境https://blog.csdn.net/qq_40718185/article/details/139231769
2.人工智能团队研究成果在TKDE发表:样本高效的离线转在线强化学习算法实验室人工智能团队在D4RL基准测试上进行了大量实验来说明本研究中提出的算法的优越性。实验结果表明,本研究提出的算法在样本效率方面显著优于最先进的离线转在线强化学习算法。 相关的研究成果近期发表在TKDE上,文章第一作者为吉林大学未来科学国际合作联合实验室博士生郭思源,通讯作者为吉林大学陈贺昌教授和常毅教授。http://icfs.jlu.edu.cn/info/1007/3101.htm
3.在对齐AI时,为什么在线方法总是优于离线方法?根据人类反馈的强化学习(RLHF)随着大型语言模型(LLM)发展而日渐成为一种用于 AI 对齐的常用框架。不过近段时间,直接偏好优化(DPO)等离线方法异军突起 —— 无需主动式的在线交互,使用离线数据集就能直接对齐 LLM。这类方法的效率很高,也已经得到实证研究的证明。但这也引出了一个关键问题: https://m.thepaper.cn/newsDetail_forward_27434433
4.离线强化学习在线强化学习分类离线训练平台学习的第一步是安装并使用该平台,安装过程中网上有很多在线教程,都总结的比较好,但在线安装apollo的平台过程中,其镜像下载有十几个G,而且下载速度较慢,如果网络不稳定,很容易下载失败,导致安装过程可能要很就,为此查找多方资料,将apollo的镜像打包进行离线下载后进行安装,可以减少很多麻烦,故写此博客,希望少入坑。https://blog.51cto.com/u_12195/10796191
5.强化学习的基本概念在线学习和离线学习针对的是在强化学习模型在训练过程中交互数据的使用方式。在线学习的强化学习模型,会在一个交互之后,立即用本次交互得到的经验进行训练。而离线学习的强化学习模型,往往是先将多个交互的经验存储起来,然后在学习的时候,从存储的经验中取出一批交互经验来学习。 https://www.jianshu.com/p/28625d3a60e6
6.离线强化学习因此,离线强化学习(offline reinforcement learning)的目标是,在智能体不和环境交互的情况下,仅从已经收集好的确定的数据集中,通过强化学习算法得到比较好的策略。离线强化学习和在线策略算法、离线策略算法的区别如图 18-1 所示。图18-1 离线强化学习和在线策略算法、离线策略算法的区别https://hrl.boyuai.com/chapter/3/%E7%A6%BB%E7%BA%BF%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0/
7.科学网—[转载]强化学习在资源优化领域的应用随着强化学习在围棋、游戏等序列化决策领域大放异彩、在多智能体协作等领域取得较好表现,它的一些优秀特性也得到了资源优化领域的关注。首先,基于强化学习的解决方案决策非常高效。虽然强化学习策略的训练非常耗时,但是这些训练工作可以离线进行,实际中只需要利用训练好的模型进行推理,因而在绝大部分情况下可以做到近似实时https://blog.sciencenet.cn/blog-3472670-1312677.html
8.离线强化学习(OfflineRL)系列3:(算法篇)REM(RandomEnsembleMix本文介绍Google Brain团队与Alberta大学合作在2020年提出的一种基于DQN replay dataset的鲁棒离线强化学习解决方法,该方法发表于ICML顶会上,使用60个离线强化学习dataset,规模相当于ImageNet的60倍,方法名为“An Optimistic Perspective”。摘要:本文探讨在不修正分布偏移的情况下,随机集成混合方法(REM)https://zhidao.baidu.com/question/1507056694418933579.html
9.AAAI2023工业应用领域内,人工智能研究的最新学术“狂飙”成果当前,强化学习领域主要有两个分支:离线(offline)强化学习和在线(online)强化学习。前者关注在没有交互环境的情况下,仅凭离线数据集训练智能体;后者则是通过和环境交互的方式来训练智能体。然而在现实中,离线数据集并不完备,只通过之前的数据不能训练出最优智能体。在线强化学习虽然可以得到无限的数据,但因为在线探索http://www.360doc.com/content/12/0121/07/59643395_1066952795.shtml
10.仙启仙启,面向行业专家、企业及研发运营人员的智能决策开发平台。通过数据驱动环境虚拟技术,将复杂的决策过程梳理成可操作的业务流程,并依托云计算资源和深度强化学习算法库,为用户提供智能决策全流程一站式服务.https://www.revive.cn/
11.多目标排序在快手短视频推荐中的实践的离线学习方法,如一些非梯度优化算法:PSO(粒子群算法)、ES(进化策略)等,即每次产生一组超参数(a,b,,h),算一下该组参数对应的评估目标:组合AUC 多轮迭代收敛后,选择AUC加权和最大的。 上述离线方法都有具有和Learn2Rank类似的缺陷,为了解决该问题,我们这边开发了在线自动调参框架。自动在线调参的工作机制https://maimai.cn/article/detail?fid=1603183032&efid=T7RIoRo14AcJUC_PIXWVhA
12.RLinAutoPilot自动驾驶强化学习:效果展示,框架设计算法和用于在线的state,action,reward等数值监测,以及离线数据收集和分析 强化学习训练@./ReinforcementLearning/train/RL (GAL,global and local)多个agent,每个使用local模型,并行训练,更新到global模型中 模仿学习及IL RL共同训练@./ReinforcementLearning/train/RL_with_IL https://github.com/B-C-WANG/ReinforcementLearningInAutoPilot/
13.从搜索到智能客服:阿里开放强化学习技术演进与实践书籍机器之心近日,阿里开放了一本描述强化学习在实践中应用的书籍《强化学习在阿里的技术演进与业务创新》,这本书重点描述了阿里巴巴在推动强化学习输出产品及商业化的实践过程。例如在在搜索场景中对用户的浏览购买行为进行 MDP 建模、在推荐场景中使用深度强化学习与自适应在线学习帮助每?个用户迅速发现宝贝、在智能客服中赋予阿里https://www.jiqizhixin.com/articles/2018-02-06-3
14.探索(Exploration)还是利用(Exploitation)?强化学习如何tradeoff探索VS 利用,这是强化学习中至关重要的话题。我们希望强化学习中的智能体尽快找到最佳策略。然而,在没有充分探索的情况下就盲目地选择某个策略会带来一定的问题,因为这会导致模型陷入局部最优甚至完全不收敛。https://www.zhuanzhi.ai/document/8c25cb38ff7b6a2acc8610b42ff00fdd
15.基于深度强化学习的水面无人艇路径跟踪方法6.针对上述现有技术的不足,本发明所要解决的技术问题是:如何提供一种基于深度强化学习的水面无人艇路径跟踪方法,无需进行环境和无人艇运动建模并且具备自适应能力,从而能够进一步提高无人艇路径跟踪控制的稳定性和准确性。 7.为了解决上述技术问题,本发明采用了如下的技术方案: https://www.xjishu.com/zhuanli/54/202210772926.html/
16.深度强化学习实战:用OpenAIGym构建智能体全书先简要介绍智能体和学习环境的一些入门知识,概述强化学习和深度强化学习的基本概念和知识点,然后重点介绍 OpenAI Gym 的相关内容,随后在具体的 Gym 环境中运用强化学习算法构建智能体。本书还探讨了这些算法在游戏、自动驾驶领域的应用。本书适合想用 OpenAI Gym 构建智能体的读者阅读,也适合对强化学习和深度强化https://www.epubit.com/bookDetails?id=UB83082546ee4de