机器学习之增量训练

在传统的机器学习中,模型通常在训练集上进行离线训练,一旦模型训练完成,就会被部署到生产环境中。然而,这种静态的模型无法适应实时变化的数据。增量训练(IncrementalTraining)的概念应运而生,它允许模型在不重新训练的情况下,通过接收新数据进行更新。

增量训练的原理

增量训练的核心思想是将新数据集合并到已有的模型中,通过部分学习(IncrementalLearning)的方式对模型进行更新。与传统批量学习不同,增量训练不需要使用全部数据集,而是只使用新的数据进行模型的调整。

1.模型参数的更新

在增量训练中,模型的参数是动态更新的。当新数据到来时,模型会通过学习新样本的特征来调整自身参数,以适应新的数据分布。这通常通过梯度下降等优化算法来实现。

2.遗忘与记忆

在增量训练中,模型需要在学习新知识的同时保留旧知识。这就涉及到遗忘(Forget)和记忆(Retain)的平衡。合理的增量训练算法应该能够在学习新知识的同时,不丢失对过去知识的理解。

3.在线学习

增量训练通常与在线学习(OnlineLearning)相结合。在线学习是一种模型能够在不断接收新数据的同时进行实时学习的方式,与传统的批量学习相比,它更加灵活和高效。

增量训练的优势

1.实时适应性

增量训练使得机器学习模型能够实时适应新的数据分布,从而更好地应对动态变化的环境。这在许多领域中都是至关重要的,例如金融、医疗和物联网。

2.资源效率

相比于重新训练整个模型,增量训练更加资源有效。它只需要处理新数据,大大减少了计算和存储资源的需求,特别是对于大规模数据集的情况下更为明显。

3.持续学习

增量训练为机器学习模型的持续学习提供了可能性。模型可以不断地吸收新的知识,不断提升性能,而无需停机更新。

增量训练的应用场景

1.自然语言处理

在自然语言处理领域,语言是动态变化的。通过增量训练,模型可以不断地学习新词汇、短语和语法结构,以更好地理解和生成自然语言。

2.金融风控

金融领域的数据常常受到市场波动和风险事件的影响。通过增量训练,风控模型可以实时更新,更好地适应不断变化的市场情况,提高风险预测的准确性。

3.智能推荐系统

在推荐系统中,用户的行为和兴趣是不断变化的。通过增量训练,推荐模型可以根据用户最新的行为进行实时调整,提供更个性化的推荐服务。

挑战与未来展望

虽然增量训练在许多方面都取得了显著的成就,但也面临着一些挑战。其中之一是遗忘与记忆的平衡,模型需要在学习新知识的同时保留对旧知识的理解。此外,增量训练对数据流的处理也是一个重要的问题,需要有效的流式学习算法来应对数据源的不断涌现。

未来,随着硬件和算法的不断发展,增量训练将会变得更加普遍和成熟。深度学习领域的研究也将着重解决增量训练中的各种挑战,推动机器学习向持续学习的方向发展。

增量训练技术为机器学习模型的持续学习提供了强大的工具。

THE END
1.通俗理解机器学习模式对比——离线在线与增量学习的差异#机器学习 #离线学习 #在线学习#增量学习 #模型训练 #数据更新 #预测准确率 第一节:机器学习模式的类比与核心概念 1.1 机器学习模式的类比 机器学习模式可以被视为不同的“烹饪方法”,离线学习像是准备一顿大餐,需要所有食材一次性备齐;在线学习则像是开一家快餐店,需要根据顾客的实时反馈调整菜单;增量学习则更https://blog.csdn.net/qq_37148940/article/details/117913147
2.携程基于LSTM的广告库存预估算法使用离线与在线增量训练相结合的训练方式,使模型更具活力,每天在优选出的广告库存模型基础上进行微调,可以不断维持模型提供精准的预估能力。 作者简介 Paul,携程高级研发经理,关注广告投放技术架构、大数据、人工智能等领域; Xunling,携程资深后端开发工程师,关注广告服务、性能优化,对AI技术有浓厚兴趣。 https://www.51cto.com/article/755143.html
3.从100w核到450w核:字节跳动超大规模云原生离线训练实践动手点关注干货不迷路 本文整理自字节跳动基础架构研发工程师单既喜在 ArchSummit 全球架构师峰会上的演讲,主要介绍字节跳动离线训练发展的三个阶段和关键节点,以及云原生离线训练中非常重要的两个部分——计算调度和数据编排,最后将结合前两部分分享字节跳动在实践中沉https://maimai.cn/article/detail?fid=1767401397&efid=R2_kM5y-yEUDCK88FZWrGA
4.华为技术HuaweiTech总第096期算力:分布式的多级云架构,让算力无处不在 分布式的多级云架构涵盖了公有云、本地云和边缘云的协同分工,实现公有云做全量训练,本地云做增量训练和中心推理,边缘云负责推理(如图2),为运营商大模型部署带来了三重收益。 图2:公有云和私有云协同训练,打造个性化的模型 成本更节省。大模型的预训练需要在一段时间内https://www.huawei.com/cn/publications/huaweitech/202401
5.推荐系统入门篇流式训练:、流式训练模块的主要作用是使用实时训练样本来更新模型。推荐算法中增量更新部分的计算,通过流式计算的方式来进行更新。在线训练的优势之一,是可以支持模型的稀疏存储。训练方面,在线模型不一定都是从零开始训练,而是可以将离线训练得到的模型参数作为基础,在这个基础上进行增量训练。 https://www.jianshu.com/p/27021ab18d52
6.深度学习的类增量学习算法综述腾讯云开发者社区近年来, 深度学习模型在众多领域取得了广泛成功. 现有的深度学习模型大多部署在静态环境下, 依赖提前收集好 的数据集进行离线训练, 模型一经确定, 便无法进一步更新. 然而, 现实中开放动态的环境往往存在以流形式不断到来的数据, 包括随时间演进不断产生的新类别数据. 因此,https://cloud.tencent.com/developer/article/2318581
7.大疆教育平台增量训练任务指的是基于已有模型生成的预训练模型,增加数据集进行再次训练的过程。有以上两种方法创建增量训练任务。 增量训练一般情况下使用默认预训练模型继续训练即可,也可以在上图下拉列表中选择已有模型在2000步、4000步、6000步、8000步、最终形成的预训练模型的基础上进行训练,增量训练的数据集标签需与原模型的标签https://edu.dji.com/hub/docs?uuid=13f64464-f42d-47ea-abc5-b14c2c309de5&t=708
8.2020届计算机科学方向毕业设计(论文)阶段性汇报推荐系统与用户进行多步交互的过程可以建模为马尔科夫决策过程并使用强化学习算法训练推荐策略,但在真实的工业界场景中,在线上进行强化学习模型的训练成本极高。本课题希望使用推荐系统与用户交互的历史数据离线训练强化学习算法,并探讨这一模式的问题解决方式。 https://zhiyuan.sjtu.edu.cn/html/zhiyuan/announcement_view.php?id=3709
9.数博文本理解平台支持识别模型的离线训练;支持基于语料库的测试集生成;支持模型的版本管理;支持模型的增量训练 知识自动加工 支持包括领域实体、关系、属性和事件的自动提取;支持通过SDK、WebService、Restful API等多种方式集成模型 应用场景 知识提取 支持对各领域现存的大量文本资料的基于规则的数据要素提取,以及基于深度学习的数据要素提http://www.beidasoft.com/multi/520.html
10.离线机器学习模型训练集构建袋鼠社区离线机器学习模型训练集构建 - 离线机器学习模型训练集构建是机器学习项目中的关键步骤,特别是在资源有限或者数据安全性要求较高的情况下,离线训练集的构建尤为重要。以下是构建离线机器学习模型训练集的一般步骤和注意事项:数据收集:确定数据源:根据模型需求,确定合https://www.dtstack.com/bbs/article/15786