5.2随机森林在巨量数据中的增量学习lipu123

sklearn作为早期开源的机器学习算法库,难以预料到如今人工智能技术走进千家万户的应用状况,因此并未开放接入GPU进行运算的接口,即sklearn中的所有算法都不支持接入更多计算资源。因此当我们想要使用随机森林在巨量数据上进行运算时,很可能会遭遇计算资源短缺的情况。幸运的是,我们有两种方式解决这个问题:

增量学习是机器学习中非常常见的方法,在有监督和无监督学习当中都普遍存在。增量学习允许算法不断接入新数据来拓展当前的模型,即允许巨量数据被分成若干个子集,分别输入模型进行训练。

model1=model1.fit(X.iloc[:,:8],y)#注意,X有80个特征,X_fc只有8个特征,输入同一个模型的数据必须结构一致model1.estimators_#你发现了吗?model1中原始的树消失了,新的树替代了原始的树再让model1对加利福尼亚房价数据集进行训练,会发生什么呢?别忘了model1之前训练过加利福尼亚房价数据集:

sklearn的这一覆盖规则是交叉验证可以进行的基础,正因为每次训练都不会受到上次训练的影响,我们才可以使用模型进行交叉验证,否则就会存在数据泄露的情况。但在增量学习中,原始数据训练的树不会被替代掉,模型会一致记得之前训练过的数据,我们来看看详细情况:

不过,这里存在一个问题:虽然原来的树没有变化,但增量学习看起来并没有增加新的树——事实上,对于随机森林而言,我们需要手动增加新的树:

trainpath=r"../集成学习公开课数据集/Bigdata/bigdata_train.csv"testpath=r"../集成学习公开课数据集/Bigdata/bigdata_test.csv"2.设法找到csv中总数据量当我们决定使用增量学习时,数据应该是巨大到不可能直接打开查看、不可能直接训练、甚至不可能直接导入的(比如,超过20个G)。但如果我们需要对数据进行循环导入,就必须知道真实的数据量大概有多少,因此我们可以从以下途径获得无法打开的csv中的数据量:

2.如果数据没有索引,则使用pandas中的skiprows与nrows进行尝试:skiprows:本次导入跳过前skiprows行nrows:本次导入只导入nrows行例如,当skiprows=1000,nrows=1000时,pandas会导入1001-2000行当skiprows超出数据量的时候,就会报空值错误EmptyDataError。

1.定义模型:

reg=RFR(n_estimators=10,random_state=1412,warm_start=True#增量学习的过程很漫长,你可以选择展示学习过程,verbose=True#调用你的全部的资源进行训练,n_jobs=8)

THE END
1.Python混合注意力机制多变量本文探索长短期记忆(LSTM)循环神经网络的结构以学习变量层面的隐藏状态,旨在捕捉多变量时间序列中的不同动态,并区分变量对预测的贡献。利用这些变量层面的隐藏状态,提出了一种混合注意力attention机制来对目标的生成过程进行建模。随后开发了相关训练方法,以联合学习网络参数、变量重要性和与目标变量预测相关的时间重要性。https://blog.51cto.com/u_14293657/12908622
2.基于增量学习的CNNLSTM光伏功率预测光伏功率预测 长短期记忆(LSTM)网络 增量学习 弹性权重整合(EWC)算法https://www.cnki.com.cn/Article/CJFDTotal-DQJS202405004.htm
3.TensorFlow十三LSTM练习lstm增量学习文章浏览阅读556次。https://yq.aliyun.com/articles/202939Mnist: BATCH_SIZE X 784 arrayCCN:BATCH_SIZE X28X28 -->BATCH_SIZE X28x28X1 arrayLSTM:28(NUM_STEPS)个BATCH_SIZE X28 list先试试数据变换:# coding=utf-8import os_lstm增量学习https://blog.csdn.net/lijil168/article/details/82895080
4.人工智能中小样本问题相关的系列模型(一):元学习小样本学习元学习的主要方法包括基于记忆Memory的方法、基于预测梯度的方法、利用Attention注意力机制的方法、借鉴LSTM的方法、面向RL的Meta Learning方法、利用WaveNet的方法、预测Loss的方法等。 2. 基于记忆Memory的方法 基本思路:既然要通过以往的经验来学习,那么是不是可以通过在神经网络上添加Memory来实现呢? https://www.nowcoder.com/discuss/432735
5.lstm原理增量迁移原理介绍华为云帮助中心为你分享云计算行业信息,包含产品介绍、用户指南、开发指南、最佳实践和常见问题等文档,方便快速查找定位问题与能力成长,并提供相关资料和解决方案。本页面关键词:lstm原理。https://support.huaweicloud.com/topic/831072-3-L
6.nlp面试题大全LSTM是如何实现长短期记忆功能的? RNN有梯度消失和梯度爆炸问题,学习能力有限。LSTM可以对有价值的信息进行长期记忆,有广泛应用 首先结合LSTM结构图和更新的计算公式探讨这种网络如何实现功能。 与传统的RNN相比,LSTM依然是基于 只不过对内部的结果进行了更加精细的设计:加入了输入门,,遗忘门以及输出门 https://www.jianshu.com/p/c3e3ab89ccab
7.基于LSTM的机场跑道视程预测关键词:长短时记忆网络深度学习跑道视程预测时序预测神经网络预测模型人工智能 Prediction of Runway Visual Range Based on LSTM PENG Lu ,LIU Jun-Kai ,SHENG Ai-Jing,ZHANG Xing-Hai,SUN Wen-Zheng Abstract: Runway visual range (RVR) reflects the pilot’s visual range, which is one of the importanthttps://c-s-a.org.cn/html/2022/5/8492.html
8.一种基于注意力机制的无人机自主导航分层强化学习算法Shin等人[28]使用各种强化学习算法(如无监督学习、监督学习和强化学习)对无人机进行了实验研究。Hodge等人[29]开发了一种通用导航算法,通过无人机机载传感器的数据引导无人机到达问题地点。为了构建通用的自适应导航系统,本研究采用了一种结合增量课程学习和LSTM的近端策略优化DRL算法。Li等[30]提出了一种独特的DRLhttps://www.auto-testing.net/news/show-122010.html
9.一种基于小样本的迭代式增量对话意图类别识别方法1.一种基于小样本的迭代式增量对话意图类别识别方法,其特征在于,该识别方法包括以下步骤:步骤1:针对对话意图中的文本句子进行分词并训练得到词向量;步骤2:针对一部分词向量先后利用LSTM网络和CNN网络特征提取后得到句子向量,将句子向量通过分类单元以训练初步分类模型,将另一部分词向量输入至训练完毕的初步分类模型,得到https://www.qcc.com/zhuanliDetail/94f955987af15c76b7bd63d0b0b01319.html
10.深度学习在基于日志分析的系统异常检测中的应用本文以文献[3]为例,介绍了深度学习模型(LSTM)在基于日志分析的系统异常检测中的应用,详细介绍了日志模板异常检测和日志变量异常检测这两个部分,希望能够带给大家一些启发。 参考文献 [1] Md Zahangir Alom, Tarek M. Taha. The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches.https://cloud.tencent.com/developer/news/230251
11.基于BLS和LSTM的剩余使用寿命预测方法及系统9.有鉴于此,本发明提供了一种基于bls和lstm的剩余使用寿命预测方法及系统,其中,bls具有强大的特征表征和预测能力,能够准确地表示数据特征与预测结果之间的关系;训练速度高且具有增量学习的优势,当网络没有达到预期的性能时,只需要增量学习,且只需要计算增量部分而无需重构整个网络,这大大提高了数据处理的效率。同时,https://www.xjishu.com/zhuanli/55/202211426550.html
12.一文概述联邦持续学习最新研究进展澎湃号·湃客澎湃新闻当前,一般认为持续学习 (Continual Learning) 和增量学习(Incremental Learning)、终身学习 (Lifelong Learning) 是等价表述,它们都是在连续的数据流中训练模型,随着时间的推移,更多的数据逐渐可用,同时旧数据可能由于存储限制或隐私保护等原因而逐渐不可用,并且学习任务的类型和数量没有预定义 (例如分类任务中的类别数)https://www.thepaper.cn/newsDetail_forward_23531390
13.机器学习期末复习题.pdf监督学习 B. 无监督学习 C. 线性决策 D. 增量学习 6. 以下属于聚类方法的是( ABD ) A. k-means B. 层次聚类 C. Fisher鉴别 D. 密度聚类 7. 以下可用于聚类性能测量的评估方法 ( ABCD ) A. Jaccard系数 B. FM指数 C. Rand指数 D. DB指数 8. 以下可行的最近邻分类的加速方案 ( AB ) 14 A. https://m.book118.com/html/2023/0910/5120210043010324.shtm
14.北京大学计算语言学教育部重点实验室10.董秀芳,从动作的重复和持续到程度的增量和强调,《汉语学习》2017年第4期:3-12页。 11.董秀芳,汉语词汇化研究的意义、存在的疑问以及新的研究课题,《历史语言学研究》第11辑:272-283页。商务印书馆,2017年10月。 12.Xiaodong Zhang, Sujian Li, Lei Sha, Houfeng Wang, Attentive Interactive Neural Networhttps://klcl.pku.edu.cn/xzyj/lwfb/article.html