互联网的发展,是伴随着我们的需求和使用而不断前进的。作为新生事物,元宇宙里有很多时髦的专业术语,web3.0算是其中一个。本文梳理了从Web1.0到Web3.0的互联网演变阶段,并推演了或将来临的Web4.0和Web5.0。
从Web1.0到Web5.0——关键时刻的预测
Web1.0
信息共享的时代
在Web1.0里,大多数互联网应用只能做到信息的发布、共享和交互,很少能做到更深层的价值挖掘。第一代互联网在盈利模式上始终是个难题,这个问题导致了第一次互联网泡沫的破裂。1994~2004年,是第一个互联网浪潮兴起、泡沫和衰退的完整周期。
在Web1.0时代,虽然互联网企业的名气比较响亮,但是在市值和盈利能力上还是那些企业信息化的IT巨头们更胜一筹,例如微软、思科、英特尔、IBM等。
延伸思考
Web2.0
数据的大浪淘沙时代诞生互联网巨头
Web2.0诞生的标志性事件应该就是谷歌在2003年后陆续发表了关于GFS、MapReduce和BigTable的论文,解决了数据存储、计算和处理的成本问题。谷歌通过内部自研,攻克了互联网领域的这三座大山,通过大数据的成本优势,很早就实现了盈利,并于2004年公开上市。
有了精准的数据,就可以形成巨大的流量;有了流量,就等于把控了线上的营销渠道。通过大数据和千人千面的精准建模,互联网巨头也开始渗透金融领域,通过金融的杠杆不断放大业务规模。
海量的个人隐私数据让一些互联网平台得以引导用户购买特定产品,使得用户对投放的内容和产品上瘾。它们利用大数据杀熟,同样的商品和服务,多次查看价格会出现变化,老客户的价格比新客户更高。它们只推荐能带来潜在商业利益的产品甚至假冒伪劣产品,而不是对用户最适合、最恰当的商品。
在Web2.0时代,你清楚自己的数据被怎样使用么?
Web3.0
数字化的普及和对等价值交换
为了规范管理互联网平台的扩张和对数据的使用,欧洲颁布了《通用数据保护条例》(GDPR),中国也制定了数据安全法。GDPR规定数据主体享有的七项数据权利分别是:访问权、更正权、删除权(“被遗忘权”)、限制处理权、可携带权、反对权,以及不受制于自动化决策的权利。
如果说Web3.0的核心是数据平等和对等价值交换,数据平等是为了更好的和规模化的对等价值交换,那么可以围绕以下内容来展开各种探索。
个人数据管家
假设网络的速度足够快、延时足够低,也许云手机的生态可以加速个人数据管家的诞生。现在的互联网架构中,有大量应用要用手机号码注册,而手机号码又直接对应个人最隐私的数据——身份证号码,一旦暴露,将给个人带来极大影响。而通过云手机里个人数字管家生成的虚拟身份与各种APP对接,可以在真实身份上加一层防护,实现数据更高级别的安全防护,避免隐私的泄露。Web3.0的网络链接价值
对Web3.0来讲,参与其中的个体和企业是对等的关系,在价值交换时需要经过复杂的网络链接,而不仅仅是通过单一的互联网平台。
例如,一个企业在做招聘的时候,可以通过带明确激励条件的小程序做传播,每个点击、传播和报名的用户都会通过信息加密记录下来。经过多次链路传播后,企业可以核对最终录取者的信息,并把激励发放给链路中间所有的贡献者。如果企业能够长期保持其在激励上的信用,应该是可以替代传统的网站招聘方式,毕竟企业招聘和帮朋友介绍机会是个双赢的事情。这样的方式可以做到精准的信息匹配,在一定程度上也能很好地保护链路上用户的隐私。
Web3.0时代,并不是要倒退到互联网的前夜,做事都得靠关系,靠线下的走动;而是要让这种线下的信息和价值,实现数字化、网络化并且可传递。深网信息挖掘的技术变得更重要,可能强化版的图数据库会成为时代的主宰,各种中小型信息数据站点又能够繁荣发展。
Web3.0会是一个技术上的倒退么?
在Web3.0时代,怎样不被各种概念忽悠?
Web4.0
AI+脑机接口意识的交互
AI的发展从量变到质变
计算机科学和密码学的先驱阿兰·麦席森·图灵于1950年写了一篇论文《计算机器与智能》,文中预言了创造出具有智能的机器的可能性,提出了著名的图灵测试:如果一台机器能够与人类展开对话而不能被辨别出其机器身份,那么称这台机器具有智能。图灵测试是人工智能哲学方面第一个严肃的讨论。在2006年之前学习AI的人可能会感受到,无论用什么算法都很难满足通用场景。哪怕是现在看起来挺简单的车牌识别和人脸识别,当时都靠算法工程师调参的手艺,可能在一个特定的场景下可以工作,但是切换到另一个相似的场景就不能满足要求了。
随着互联网的发展提供了丰富的大数据资源以及GPU的硬件性能提升,AI的发展终于在2016年迎来了质变。2016年3月,Google旗下的AlphaGo在韩国首尔以总比分4比1的成绩战胜了围棋世界冠军、职业九段选手李世石。2017年5月,进化后的AlphaGo在“人机大战2.0”中,以3:0战胜世界排名第一的中国选手柯洁。
今天,大家可能觉得AI还是无法真正的读懂自己,特别是一些个性化问题。这背后的深层原因是现在的大数据积累都是从互联网平台视角出发的,而不是从个人用户视角出发的。
即使互联网平台拥有大量的数据,但其在个人的维度上是碎片化和不完整的。由于数据隐私问题,个人也不可能把自己的完整数据交给互联网平台。但是可以想象一下,如果个人的数字管家,拥有一个人一生的数字化的记录,比如收集记录一个人一生的视频,每个刺激、反馈和动作,每个阅读的内容和笔记,每一段对话和思考,那这样的数据足以训练AI读懂一个人。
如果Web3.0真的可以实现,可以想象,个人数字化水平会有飞跃的发展。随着技术的发展和进步,“个人数字化”的门槛会大幅降低,越来越多的个人数字画像会被完整记录,虚拟数字人也会越来越懂个人的需求。AI通过脑机接口读取人类意识
科学家和工程师提升计算机的AI水平时,另外一条研究路线也取得了巨大进步,那就是对大脑运作机理的研究。对大脑的研究除了通过输入和反馈,也需要对大脑的实体进行深度研究。其中脑机接口就是一项非常实用的技术。目前,大部分的脑机接口就只是对大脑进行读取信息的操作。
2021年5月,斯坦福大学、霍华德休斯医学研究所(HHMI)和布朗大学等团队用脑机接口技术实现了瘫痪患者将脑中的“笔迹”转化成屏幕字句,并在Nature杂志发表论文《High-performancebrain-to-textcommunicationviahandwriting》。
他们将AI软件与脑机接口设备结合,利用大脑运动皮层的神经活动解码“手写”笔迹,并使用循环神经网络(RNN)解码方法,将笔迹实时翻译成文本,快速将患者对手写的想法转换为电脑屏幕上的文本。实验人员每分钟可以输入90个字符,接近正常人在智能手机上的打字速度,这个性能已经非常接近实用场景了,实现了AI读懂人类大脑中的表达。
1、AI对抽象但是简单的概念进行识别,例如对图像、声音等的识别来模拟大脑的功能;2、通过预测—反馈的不断测试和复杂的博弈场景,利用全面的个人数据,用AI来拟合人类对各种输入的反馈;3、通过对脑机接口的研究,一方面深度挖掘大脑隐藏的工作机制和那些没能表达出来的想法,塑造更完整的AI;另一方面提供一个很好的人机交互方式,人类可以通过简单的方式表达自己的意识。
在Web4.0时代,怎样保护自己的意识被合法使用?
Web5.0
人机融合的时代
也许大家觉得Web5.0的提法有些过于超前,不过很多Web5.0时代的技术,现在都已经在萌芽了。人机融合的定义,借用图灵测试的标准,就是无论是在网络的交流中,还是实际的交往中,已经分辨不出是机器还是人了。
2017年,波士顿动力被日本软银集团收入囊中。易主并未影响到Atlas的快速成长,它的动作更加流畅,并且能够上台阶、后空翻等。随后几年里,Atlas学会了跑步、体操、翻滚、倒立、跳舞等技能。
2022年8月11日晚间,小米的秋季新品发布会推出了小米首款全尺寸人形仿生机器人——“CyberOne”。
图源:特斯拉官网
根据特斯拉的计划,Optimus最早将于2023年开始生产。从传感器和执行器的角度来看,制造一个人形机器人是有可能的,目前所缺少的要素有两点——足够的智能和扩大的生产规模。Web4.0的发展和积累刚好可以给机器人带来足够的智慧。
如果AI机器人对外界的每一个刺激都能做出跟人类一样的动作和反应,那么在模拟人的方面就算是成功的。但是机器人的结构与人类肯定会有天壤之别,以机械或者其他材料打造的机器人是无法模拟人类的血肉之躯的,也无法提供人类交流时需要获得的真实感受。也许听觉是第一个被AI机器人模拟成功的,然后视觉可以模拟一部分,但是像触觉、嗅觉、味觉等就很难模拟。
Web4.0阶段的脑机接口只是实现从大脑读取意识,但是在Web5.0阶段,脑机接口还需要实现给大脑写意识的功能,这样才能真正实现意识的互联互通。
人类在Web5.0时代,能与机器共存么?技术进步得越来越快,人类的意识真的可以互联互通吗?