序论:在您撰写大数据时代论文时,参考他人的优秀作品可以开阔视野,小编为您整理的1篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
1药物化学教学内容改革
2教学方法和手段的改革
3合理的课程体系
作者:欧阳勤王懿李海波刘天渝单位:第三军医大学药学院
一、大数据时代高校学籍管理工作的特点
(一)高校学籍管理工作数据量增多
随着我国信息技术的不断进步,高等教育规模的不断扩大和高等教育事业的蓬勃发展,学生入学信息、学生学籍档案、学生成绩数据等大量高校学籍管理信息和数据也逐年增加。数据量增多,单靠原有的学籍管理者手工纸质记录学籍信息,已经完全不能适应大数据时代的要求。新增的数据量,给高校学籍管理工作者带来了巨大的管理难度和精神压力。
(二)高校学籍管理工作业务种类繁杂
(三)高校学籍管理工作及时性强
(四)高校学籍管理工作专业人员缺乏
二、大数据时代高校学籍管理工作的发展前景
大数据时代高校学籍管理工作是在管理学籍工作的过程中,大量收集、分析、运用各类信息和数据,尝试不断创新和改进繁杂多样的学籍管理工作,使学籍管理标准化、规范化和智能化,以服务学生、服务社会,从而提高高校学籍管理工作效率和管理水平,提升高校学籍管理工作者自身修养和业务素质,促进高校和谐稳定发展。
(一)大数据时代高校学籍管理工作,要求学籍管理创新化
大数据时代下的高校学籍管理应该注重思维模式的创新化。高校学籍管理思维模式不能只停留在现有的学籍管理模式中,应该不断创新,建立适应大数据时展的思维模式。高校学籍管理思维模式既要符合高校学籍管理,以“中国高等教育学生信息网(学信网)”中的高校在校学生和毕业学生的数据和信息管理为依托,还要支持大数据时代的特点,集聚社会资源,体现学籍管理数字化,校园服务智能化,使高校学籍管理数据和信息易整理、易保存、易查询,为高校管理服务,为高校学生服务,为国际社会服务。
(二)大数据时代高校学籍管理工作,要求学籍管理规范化
大数据时代下的高校学籍管理应该做到学籍管理信息系统程序的规范化。在大数据时代下各高校要以学籍管理公开、公正、公平为基础核心,按照国家《普通高等学校学生管理规定》,认真做好学籍管理制度的改革,不断完善学籍管理工作的流程,建立学籍管理信息系统体系,改进学籍档案管理,加强学籍保密制度等。应利用大数据的特点,合理规范高校学籍管理工作,使学籍管理工作有序、高效、合法。学籍管理规范化有利于高校学生在大数据时代下增强自律性,认真贯彻执行学校的规章制度;有利于维护高校在大数据时代下的正常教学秩序,提高工作效率和教学质量;有利于高校促进大数据时代的全面发展。
(三)大数据时代高校学籍管理工作,要求学籍管理智能化
大数据时代下的高校学籍管理应该通过不断规范和创新达到最终学籍管理手段的智能化。在大数据时代下,高校学籍管理数据信息量较大,学籍管理工作繁杂多样,但通过管理思维模式的不断创新和发展,通过学籍管理信息系统的不断规范和完善,采用科学的管理手段和方法,结合各高校自身的学籍特点,深入挖掘、系统分析和有效处理高校学籍管理工作中的数据信息,能简化高校学籍管理工作流程,提高高校学籍管理工作效率,最终实现高校学籍管理数字化、简单化、人性化、智能化。
(四)大数据时代高校学籍管理工作,要求提升学籍管理工作者自身的修养
学籍管理工作者在大数据时代下,要努力提高自身的素质和修养,不断进取,熟练掌握现代化管理手段,准确运用大数据时代特有的“查询能力、思维能力、甄别能力”。学籍管理工作者要认真学习法律知识,利用法律武器维护学校和学生的数据信息及合法权益。高校学籍管理工作者还要不断增强教育事业心和管理责任心,在日常的工作中,善于在大数据形态中发现新问题,研究新情况,探索新规律,总结新经验,始终坚持“以人为本”的管理理念,提高自身在大数据中的决策能力和协调沟通能力,更好地发挥学籍管理工作能力和服务水平,提高管理效率,确保学籍管理工作的有序进行。
(五)大数据时代高校学籍管理工作,要求提升学籍管理工作者的管理水平
高校学籍管理工作者,应该意识到大数据时代下的学籍管理不只是简单的管理,更重要的是对各种繁多的学籍数据进行整理、挖掘、分析、利用。高校学籍管理工作者应该了解大数据时代学籍管理工作的重要性及其工作特点,端正工作态度,做好学籍管理数据分析研究,更好地服务学校、服务教师、服务学生,真正做到大数据时代的“管理育人、服务育人”。
三、结语
高校学籍管理工作者还应重视学籍管理队伍建设,有计划地加强对高校学籍管理工作者专业素质的培训,制定适应学籍管理工作者队伍建设发展的方针和策略。大数据时代要求学籍管理工作者对大数据挖掘、大数据分析有所了解,还应该熟练掌握、操作和应对各种繁多类型的大数据对高校学籍管理工作带来的冲击和变革,将其合理开发和利用。要提升学籍管理工作者的管理水平,就要整合各类信息,重视高校服务,加强学籍管理,建设一支强信息、重服务、细管理的高素质学籍管理队伍。同时还要促进各高校之间的合作与交流,加强各部门之间的协作与沟通,提高高校学籍管理队伍整体水平,使高校学籍管理工作在大数据时代稳步发展,不断提高。
作者:杨奕田宝柱王艳彦梁黎明单位:河北联合大学
一、大数据在图书馆管理中理论及应用现状
二、基于大数据背景下图书馆管理作用定位
“大数据”应用能够提升图书馆管理整体水平,推动服务能力、个性拓展、资源整合以及数据处理等方面的创新及改革,在图书馆管理上的定位也将更加明确。
1.管理与服务重点逐步向上游拓展。
大量的研究成果显示,无论是传统的纸质图书还是当前快速发展的电子媒介,从服务对象来看,都是以下游为重点,其功能主要体现在馆藏资源的整合、存储、提取与应用上。但在“大数据”理念指引下,图书馆的功能得到开发与拓展,实现结构化、半结构化和非结构化变化趋势,除提供可检索书目库、资源库以及功能信息库外,还提供可选择的个性化服务,其服务与管理重点逐步向上游转移。图书馆“数据化”功能不再以阅读为重点,而是通过数据搜集整理,多角度分析,形成具有决策参考和情报分析的数据包,为使用者进行决策提供准确的服务。
2.功能集成化多元化发展趋势明显。
从社会整体架构来看,图书馆的公共性特征使其成为社会服务体系的重要环节,历来都是基础教育、文献服务、休闲娱乐的重要活动,在人类繁衍生息、科技发展以及思维启蒙上发挥着重要作用。随着信息技术的深度应用,图书馆“数据化”发展成为必然趋势,以往受图书馆容量、管理人员素质以及管理权限限制,很多图书馆只发挥了存储功能,随着数据密集化、集成化和交互性发展,图书馆功能得到开发拓展,在原有的资源存储功能基础之上,又延伸为数据处理、资源整合、服务决策等,功能多元化发展趋势明显。
3.图书馆构成大数据网络结点终端。
随着国内馆藏资源联网检索功能的完善,大量的数据资源实现共享,公共图书馆除提供最新的书籍阅读之外,其服务功能更像是一个网络终端,一个可以为使用者提供舒适空间的数据服务中心。传统的图书馆馆藏资源,地域性特征极为明显,受流动性和保密性限制,很多信息资源和研究成果都是“信息孤岛”,大量的研究成果在管理中逐渐消亡。“大数据”的发展,使得图书馆管理不再是个人或者组织行为,而是社会支撑体系的重要组成部分之一,通过信息技术,与其他公共服务模块、使用终端、信息空间等形成了完整的网络,每一个公共图书馆都是一个网络终端。既可以通过“数据转化模块”实现信息的搜集,也可以通过网络平台,实现信息辐射。
三、大数据时代对图书馆管理影响因素分析
1.管理工作的服务结构影响数据提取。
相对于图书馆的管理结构而言,传统的管理模式突出的点、线、面纵向覆盖,资源服务结构往往不够均衡,地域性、专业性以及独有性特征明显,其服务人群仅限于某一地域的某一类人群。大数据时代来临,使得图书馆管理和服务实现扁平化交互发展,但终端发展受基本制度、馆藏资源、安全防范和服务结构的影响,往往很难达到预想的效果,大量的动态管理口令和管理,使图书馆信息检索、共享和决策功能大大降低。
2.信息平台的互不联通影响资源集成。
“大数据”服务最大优势是信息存储、集成、处理和应用,我国96%的公共图书资源都实现了基本数据化,引进和完善信息服务功能,具备信息互通的基本条件。但从功能应用上还存在很多问题,如信息孤岛普遍存在,很多公共图书馆为保持自己的资源优势,往往不愿意将自己处于优势地位的资源共享;平台对接程度不高,受技术条件、管理因素和安全要求限制,图书馆资源很难实现信息对接联通;数据化资源占有率较低,很多图书馆仍然采取“双轨制”运行模式,纸质图书占有比例较大。
3.服务人员的基本素质影响综合效益。
面对数据化发展的图书馆管理模式变革,工作人员最大的问题就在于思想观念更新较慢、个体基本素质不高和普遍适用性不强等,无法实现从管理者向引导者的角色转变、从管理约束功能向服务保障功能拓展。“大数据”时代来临,要求服务人员不仅要有良好的服务和发展意识,还要具备常用的计算机知识、网络维护知识和基本语言常识等,将管理员、导航员、维护员和服务员的角色扮演好,只有这几种角色达到完美统一,才能够实现更大的综合效益。
4.信息资源的服务模式影响创新标准。
在图书馆管理“数据化”的呼声中,很多省市的图书馆都进行相应的信息改革创新,力图融入“信息化”大潮,获取更大的生存空间和利益。但从信息资源的服务模式来看,仍然是以存储、检索、管理为重点,实际上是以计算机代替人的功能,整体突破不大。市场需求决定服务定位,需求层次决定发展水平,图书馆“数据化”标准与服务模式是一致的,只有真正将信息资源的共享功能、决策功能、分析功能、服务功能开发出来,才能够提高创新标准,建设符合中国发展实际的数据化网络。
四、基于大数据背景下图书馆管理方法策略
1.改善服务结构,以制度推动数据终端开放式发展。
对于图书馆而言,其开放及共享程度是知识资源分配的重要标志,必须要在宏观调控前提下,建立数据终端开放式发展模式,完善服务结构。要发挥职能部门管理作用,在供给、回应、规制等方面积极介入,优化政府、资源平台以及使用者之间的关系;要建设安全防护体系。信息的开放性必然会导致安全问题发生,要通过“互联网遗忘”法则,设置数字记忆存储期限,净化数据生态环境;建立开放信息机制。依托图书馆服务功能,推动数据化全景控制,加强管理、共享与互动,防止在信息权力分配过程中,出现数据独裁现象。
2.推动资源整合,以共享提升服务平台发展水平。
图书馆信息化的终极目标就是在中国及至世界范围内,建设一个统一、规范和集成的数据化智慧平台,能够最大限度地发挥其交易、共享、协作和服务功能。按照特定的建设原则,有限度构建以源数据、感知层、转化层、服务层以及应用层为主体的技术体系,使用数据全生命周期管理模式,对图书馆数据化的资源、服务、过程、目标及任务进行对接,进一步完善大数据服务评价体系和质量评价体系,建立支持可视化、多元化数据交互技术,以此推动最大范围内资源整合,提高智慧平台的发展水平,发挥其共享功能。
3.加强素质培养,以智慧强化数据网络的人力支撑。
我国的图书馆管理,从传统的人工发展到人工智能,而后又发展到更高的智慧层次,可以说是基于数据化模式下的必然发展趋势。不仅要做到网络平台的智慧化,还要做到管理人员的智慧化,按照约翰逊的理解:必须要具备相应的水平资质,有终身学习意愿,思维开放,能够积极参加公共活动,具有一定的创造力等特征。对于数据化平台而言,图书馆管理人员的培训更像是一种投资,通过对他们的技术、能力和观念上的投资,获取发展上的回报。而有的学者也认为,图书馆管理员的最终发展可能是“数据科学家”或者“数据分析师”,这是一种标准,更是一种期望。
4.不断提高标准,以创新促进平台功能多元化发展。
作者:刘丽霞单位:武汉职业技术学院图书馆
1数据教育是网络教育的发展理路
1.1数据教育的内涵
1.2数据教育的发展理路
2数据教育的理念分析
通过数据教育的内涵和发展理路的分析和梳理,数据教育包涵以下几种核心理念,即用户为中心、巧用慢数据、借力数据思维和构建数据产业链。
2.1数据教育的核心理念仍是用户为中心
2.2数据教育要巧用慢数据
2.3数据教育需借力数据思维
2.4数据教育应建构数据产业链
从价值链和传统网络教育的角度分析,网络教育即使在用户数据的采集、处理、储存、分析等各方面完全数字化后,即使数据量再大也不可能去做基于数据本身的公司。因为与很多互联网入口企业相比、与真正生成大数据的公司相比,这些数据量的量仍旧是非常单薄远远不够大的。因此,相对理性和可行的选择是数据教育的运用着力点应放在以下三个方面。
(1)借力数据资产中介。
在互联网上,任何主动收集庞大数据的行为,其成本都难以想象。目前我国已有不少学校开始了数据挖掘的探索。如东华大学的智能实验室项目、浙江大学的资产数据项目、复旦大学的学生数据分析和清华大学一些学生成长类的数据分析。总体来看,开始进行数据挖掘的高校共同特点是信息化做得好且规模较大并拥有有充足的数据量。建立网络教育数据的资产中介,专门进行数据的挖掘使用和分析,是数据教育的可行之道。对不具备大规模数据资源的机构来说,数据资产中介是有效的可行之道。
(2)进行数据资产管理,实现学习内容深加工、学习行为分析和监测,是网络教育应用大数据重点挖掘的项目。
(3)做好数据驱动的解决方案,量身打造个性化资讯内容,私人定制、精准推送内容。
3结语
大数据正在重构很多传统行业。数据教育为未来网络教育内容打开充满想像的空间。对数据进行分析与过滤,数据教育解放了传统网络教育的思维方式,创新了传统网络教育的学习形式。数据可以帮助用户选择适合自己学习水平和学习习惯,满足自己学习需求的学习模式。在某种程度上讲,网络教育的未来就是分析数据。因此,数据教育是网络教育以后发展的一个重要方向。大数据时代,基于数据教育的的发展潜力,数据教育会越来越显示出其的重要性和不可替代性。哈佛大学社会学教授加里金指出,庞大的数据资源使得包括学术界、商界以及政府在内的所有领域都开始了量化进程。因此,借助大数据发力,做优质的网络教育模式,期待数据教育给出答案。
作者:孙华单位:四川广播电视大学
一、银行业所面临网络金融风险的类型
1、业务类型风险
(1)信用风险。
(2)操作风险。
网络金融业务方面的操作风险主要存在于以下方面:人员、系统、程序及突发事件;由于银行职员的操作错误或者客户的疏忽,可能引起银行网络账户的错误或混乱,进而使银行同客户的信息沟通出现问题,一旦使银行无法进行正常的金融交易,将很有可能给银行和客户带来经济损失。同时,存在缺陷的风险管理系统也将无法良好地力助银行规避网络风险,存有缺陷的系统流程设计将会影响银行网络业务的日常进行,给银行带来潜在的系统风险。有时候,流程缺乏合理性和规范性,将使网络金融业务产生不必要的繁琐步骤,也将降低银行的工作效率。同时,如果发生一些突发的意外事件,如果银行没有事前制定良好的应急方案或应急方案准备的不够仔细充分,也将不能及时化解这些风险,这将使银行遭受到严重的损失。网络经常具有放大银行操作风险的倾向,国内外已经有不少因微小操作失误所引起巨大经济损失的例子;对于网络金融业务而言,如果无法合理规避操作风险,将可能带来非常严重的损失。
(3)法律风险。
新兴的网络金融业务所面临的法律风险表现在如下两个方面:第一是相应法律文件的缺失问题;目前我国还缺乏配套的对网络金融业务进行专门监管的法律法规,网络金融业务适用的法律法规主要是对原有的金融、商务等法律条文进行引申、修订所产生的法规,这并不适应于网络金融业务的发展;另外。关于电子交易合同的法律目前还处于空白阶段,加上全国的网络银行还远未达到统一性,这造成了跨行业服务质量低下。第二是关于此方面法律适用的较大不确定性。在现阶段,一旦发生网络金融交易的损失,其责任的划分归属仍然存有十分大的争议,同时适用何何种法律也尚无明确的规定,这导致了今年来很多网络金融犯罪事件的频繁发生,这毫无疑问会对网络金融业务的发展带来严重阻碍。法律方面的风险无法解决,出现损失和纠纷无法合理适当处理的话,就无法从根本上确保网络金融交易业务的安全环境,也将对网络金融业务的发展带来阻碍。
2、技术类型风险
(1)平台风险。
网络金融业务的发展有赖于先进的交易平台系统,技术及平台的不当选择也很可能给银行带来比较大的风险。一方面,如果网络交易所支持的技术滞后,将很可能会使银行错失良好的交易机会,并且耗费银行的大量资源,给银行带来效率上的损失;另一方面,技术及平台如果与客户的软件版本不兼容甚至发生冲突,将导致信息的传输发生滞后甚至无法传输,在信息化时代这种事情是不能令人容忍的。
(2)安全风险。
二、银行网络金融风险管控的分析及防范思考
1、及时完善、规范个人银行信用体系
在我国,各级金融机构基本都开展了网上金融交易业务;因此,要完善信用体系的建设,首先要建立一个标准规范的个人征信体系,对个人信用的评价标准作出一致规定。鉴于网络金融交易是建立在虚拟的平台之上,交易双方的交易基础很大程度上是双方的信用,因此信用对金融交易实质进展的关键性因素。国内应当建立全国范围的个人信用体系,使个人的信息及信用情况及时反映在征信体系之内,并且实现银行间的数据共享;同时还应有意识提高全民的信用意识,以期提高全民的信用水平。建立个人征信体系的工作需要跨行之间的合作,并且需要线上线下的同步进行;这种基础性工作可以使银行实现长久的健康性发展,显著降低网络金融交易面临的风险水平。
2、加强银行对内部风险的管理能力
3、建设、健全配套的法律体系
4、加大对网络金融业务安全方面的投入
三、结论
目前,我国在现代网络金融风险防控方面还处于初级的发展阶段,因此更要审慎重视对网络金融业务风险的防范工作。网络金融业务的优点与优势已经初步展现出来,但也暴露出了一部分的缺点与缺陷,这需要监管机构同银行等不同部门合作起来,工作来降低网络金融业务的风险,有效降低网络金融业务的风险水平,创建一个健康的网络金融发展环境。
作者:林燕珍单位:中国建设银行福建省分行
一、大数据特征
二、大数据时代下的网络思想政治教育的新发展方向
(一)树立大数据时代的网络思想政治教育的数据意识
网络思想政治教育必须顺应科技与时代的发展。大数据时代教育工作者需要树立网络思想政治教育的数据意识,这是发展大数据环境的网络思想政治教育的首要前提。针对大数据发展网络思想政治教育可以分为如下三个方面。首先是要全面了解和分析大数据本身,理解大数据是什么、大数据的变革力量何在、大数据的未来发展趋势等等;其次是在理解大数据的基础上,系统地分析大数据时代对网络思想政治教育可能产生的影响,带来的机遇和挑战。最后是充分的确立数据意识,意识到数据是现代社会最具价值的资源,是发展与决策的源泉。用数据意识驱动网络思想政治教育工作创新发展,例如在一定的数据分析基础上将灌输式集中教育变为交流式个别教育。
(二)借助大数据技术对网络思想政治教育进行量化研究
(三)促进大数据时代网络思想政治教育信息资源建设
通过以上的分析,可以看出,大数据时代网络思想政治教育必须在继承传统中实现新发展。坚持不动摇的是网络思想政治教育的基本结构、功能以及原则。创新发展的是符合大数据时代的教育内容与内涵,进而找准变化点,更新网络思想政治教育的研究方法,将网络思想政治教育带入新的发展阶段。
作者:方世敏单位:南京政治学院上海校区南京陆军指挥学院
一、大数据时代下计算机网络安全的现状
1.计算机网络安全概述。
2.计算机网络存在的主要安全问题。
目前,计算机已经广泛应用于各行各业,人们对计算机网络的认识与利用水平也显著提升,办公、社交、生活等方方面面都离不开计算机网络。计算机网络在丰富和改变人们生活的同时,其存在的安全问题也不得不让人们警醒,经过笔者梳理,计算机网络安全问题主要存在以下几个方面:
1)网络病毒所导致的安全问题。
在计算机网络技术快速发展的过程中,也出现了越来越多、感染力越来越强的新病毒,它们无时无刻地影响着计算机网络的安全。由于计算机网络病毒具有复制性,能够感染其他程序和软件,因此,一旦计算机中了病毒,其所运行的每一步都将是危险的,都会存在让病毒也随之运行并产生破坏行为,然后应用程序被破坏,机密数据被盗用或被破坏,甚至让整个计算机系统瘫痪。
2)人为操作失误所导致的安全问题。
3)网络黑客攻击所导致的安全问题。
在大数据时代下,网络黑客对计算机网络的攻击具有更隐蔽、破坏性更强的特点。由于在大数据时代下,网络黑客通过非正常手段窃取到某一重要数据时,一旦其利用这些数据进行非法行为时便会引起巨大的波及。同时,在海量的数据中,难以及时识别网络黑客的攻击行为,对于计算机网络安全而言是一种严重的威胁。
4)网络管理不到位所导致的安全问题。
在网络安全维护中,网络安全管理是非常重要的环节,但是目前很多使用计算机的个人乃至企业、政府部门并没有对网络安全管理引起足够的重视,从事使得计算机网络的安全受到各种威胁,最终导致大量的计算机网络安全事件频繁发生。五是,网络系统自身的漏洞所导致的安全问题。理论上而言,一切计算机网络系统都存在某些漏洞。同时,在用户使用各类程序、硬件过程中由于人为疏忽也会形成一些网络系统漏洞。二者相比,后者的破坏性常常是巨大的,很多不法分子通过非法途径给用户造成计算机系统漏洞,进而窃取用户信息,给用户造成巨大的损失。
二、大数据时代下的计算机网络安全防范对策
1.加强病毒治理及防范工作。
在大数据时代,计算机病毒的种类与数量与日俱增,对其进行治理与防范是较为困难的。在对计算机病毒进行治理与防范时,笔者认为最重要的是防范,这种防范是一种主动的、积极的治理,可以通过加强计算机防火墙部署来提高网络环境的安全性,将那些不稳定的、危险的网络因素隔离在外,进而实现对网络环境的安全保护。同时,计算机使用者树立正确的病毒防范意识,在计算机日常使用中,能够定期利用杀毒软件对所使用的计算机网络环境进行杀毒,并更新病毒样本库,进而确保对计算机网络的扫描能及时识别计算机病毒并进行及时的处理。
2.加强黑客防范工作。
隐藏在大数据背后的网络黑客一旦实施其不法行为,常常会产生巨大的安全问题,因此,为了防范计算机网络安全,应当积极整合大数据的海量信息优势,建立科学的网络黑客防范攻击的模型,以此来提升识别网络黑客的反应速度。通过加强计算机网络的内外网的割离、加强防火墙配置,能够有效降低黑客攻击的可能性。同时,还可以大力推广数字认证技术,加强对访问数据的有效控制,并合理认证,有效避免非法目的用户的非法访问,进而提升对网络安全的有效保护。
3.加强网络安全管理。
4.加强网络系统漏洞的修复工作。
在大数据时代,数据更新快、存在的漏洞多,需要确保计算机系统的不定能够及时得到更新,进而使得整个计算机网络系统能够安全、正常地运行。及时对计算机网络进行修复,能够有效避免蠕虫病毒攻击计算机网络。微软不定期在专门的update站点最新的漏洞补丁,对于使用微软系统的计算机用户而言,便需要及时进行下载这些漏洞补丁,并及时安装。目前,大家可以使用金山毒霸、百度卫士、360安全卫士、腾讯电脑管家等安全管理软件完成对网络系统漏洞的修复工作,进而有效保护计算机网络安全。
作者:张国强单位:国家新闻出版广电总局725台
1“大数据”的内涵
1.1“大数据”定义
1.2“大数据”技术
“大数据”的价值不只在于其数据量之大,更大的意义在于通过数据采集、处理、分析、挖掘等技术对“大数据”的属性,包括数量、速度、多样性等等进行分析,能获取很多智能的、深入的、有价值的信息。而这些信息提取过程可大致分为以下三个阶段。
1.2.1数据输入
将分布的、异构数据源中的关系数据、平面数据等数据进行采集抽取,然后对其进行清洗、转换、集成等,最后将数据加载到数据仓中,进而为数据联机分析、挖掘等处理奠定基础。其特点主要表现为并发数高,因为成千上万的用户有可能同时访问、操作数据,比较典型的就是火车票售票网站、淘宝等,在峰值时,它们并发的访问量能达到上百万,在这种情况下,在采集端需要部署大量数据库。
1.2.2数据处理
“大数据”技术核心就是数据挖掘算法,基于不同的数据类型和格式的各种数据挖掘的算法深入数据内部,快速地挖掘出公认的价值,科学地呈现出数据本身具备的特点。并根据用户的统计需求,对存储于其内的海量数据利用分布式数据库或分布式计算集群进行普通的分析和分类汇总等。其特点主要表现为用于挖掘的算法比较复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。
1.2.3数据输出
从“大数据”中挖掘出特点,科学的建立模型,通过导入数据,以得到用户需要的结果。这已在能源、医疗、通信、零售等行业有了广泛应用。
2“大数据”安全隐患
“大数据”时代,数据量是非线性增长的,随着数据价值的不断提高,黑客对于数据的觊觎已经由原来的破坏转变成窃取和利用,病毒或黑客绕过传统的防火墙、杀毒软件、预警系统等防护设备直接进入数据层,一些高级持续性攻击已经难以用传统安全防御措施检测防护。“大数据”的安全风险主要可以分为以下两个方面。
2.1从基础技术角度看
2.2从核心价值角度来看
“大数据”技术关键在于数据分析和利用,但数据分析技术的发展,对用户隐私产生极大的威胁。在“大数据”时代,已经无法保证个人信息不被其他组织挖掘利用。目前,各网站均不同程度地开放其用户所产生的实时数据,一些监测数据的市场分析机构可通过人们在社交网站中写入的信息、智能手机显示的位置信息等多种数据组合,高精度锁定个人,挖掘出个人信息体系,用户隐私安全问题堪忧。
3“大数据”安全防范
3.1网络安全
网络是输送“大数据”资源的主要途径,强化网络基础设施安全保障,一是通过访问控制,以用户身份认证为前提,实施各种策略来控制和规范用户在系统中的行为,从而达到维护系统安全和保护网络资源的目的;二是通过链路加密,建立虚拟专用网络,隔离公用网络上的其他数据,防止数据被截取;三是通过隔离技术,对数据中心内、外网络区域之间的数据流量进行分析、检测、管理和控制,从而保护目标数据源免受外部非法用户的侵入访问;四是通过网络审计,监听捕获并分析网络数据包,准确记录网络访问的关键信息;通过统一的策略设置的规则,智能地判断出网络异常行为,并对异常行为进行记录、报警和阻断,保护业务的正常运行。
3.2虚拟化安全
虚拟机技术是大数据概念的一个基础组成部分,它加强了基础设施、软件平台、业务系统的扩展能力,同时也使得传统物理安全边界逐渐缺失。加强虚拟环境中的安全机制与传统物理环境中的安全措施,才能更好地保障在其之上提供的各类应用和服务。一是在虚拟化软件层面建立必要的安全控制措施,限制对虚拟化软件的物理和逻辑访问控制;二是在虚拟化硬件方面建立基于虚拟主机的专业的防火墙系统、杀毒软件、日志系统和恢复系统,同时对于每台虚拟化服务器设置独立的硬盘分区,用以系统和日常数据的备份。
3.3数据安全
基于数据层的保护最直接的安全技术,数据安全防护技术包括:一是数据加密,深入数据层保护数据安全,针对不同的数据采用不同的加密算法,实施不同等级的加密控制策略,有效地杜绝机密信息泄漏和窃取事件;二是数据备份,将系统中的数据进行复制,当数据存储系统由于系统崩溃、黑客人侵以及管理员的误操作等导致数据丢失和损坏时,能够方便且及时地恢复系统中的有效数据,以保证系统正常运行。
3.4应用安全
由于大数据环境的灵活性、开放性以及公众可用性等特性,部署应用程序时应提高安全意识,充分考虑可能引发的安全风险。加强各类程序接口在功能设计、开发、测试、上线等覆盖生命周期过程的安全实践,广泛采用更加全面的安全测试用例。在处理敏感数据的应用程序与服务器之间通信时采用加密技术,以确保其机密性。
3.5终端安全
随着云计算、移动互联网等技术的发展,用户终端种类不断增加,很多应用程序被攻击者利用收集隐私和重要数据。用户终端上应部署安全软件,包括反恶意软件、防病毒、个人防火墙以及IPS类型的软件,并及时完成应用安全更新。同时注重自身账号密码的安全保护,尽量不在陌生的计算机终端上使用公共服务。同时还应采用屏蔽、抗干扰等技术为防止电磁泄漏,可从一定程度上降低数据失窃的风险。
4“大数据”安全展望
“大数据”时代的信息安全已经成为不可阻挡的趋势,如何采用更加主动的安全防御手段,更好地保护“大数据”资源将是一个广泛而持久的研究课题。
4.1重视“大数据”及建设信息安全体系
在对“大数据”发展进行规划的同时,在“大数据”发展过程中,需要明确信息安全的重要性,对“大数据”安全形式加大宣传的力度,对“大数据”的重点保障对象进行明确,对敏感、重要数据加大监管力度,研究开发面向“大数据”的信息安全技术,引进“大数据”安全的人才,建立“大数据”信息安全体系。
4.2对重点领域重要数据加强监管
海量数据的汇集在一定程度上可能会暴露隐私信息,广泛使用“大数据”增加了信息泄露的风险。政府层面,需要对重点领域数据范围进行明确,制定完善的管理制度和操作制度,对重点领域数据库加大日常监管力度。用户层面,加强内部管理,建立和完善使用规程,对“大数据”的使用流程和使用权限等进行规范化处理。
4.3加快研发“大数据”安全技术
传统信息安全技术不能完全适用于新兴的“大数据”领域,云计算、物联网、移动互联网等新技术的快速发展,对“大数据”的收集、处理和应用提出了新的安全挑战。加大“大数据”安全技术研发的资金投入,提高“大数据”安全技术产品水平,推动基于“大数据”的安全技术研发,将有利于“大数据”更好地推动国家和社会发展。
作者:乔书芳赵巍单位:河北出入境检验检疫局
1对公共利益诉求的精益响应
2对公共管理决策的全新认知
3对公共治理战略的深刻影响
目前,大数据已经在商业领域中被广泛应用,并产生了巨大影响。在商业领域,新的研究方法拓展了现有的理论模型,可以利用社会网络、数据挖掘和统计等方法挖掘出高维度的市场信息。即便是在社会领域,大数据同样会帮助我们认识和适应公共治理的社会环境。大数据管理不仅是一种技术或管理方式的创新,还代表着人类对于信息更加全面的把握能力,同时也反映着人类自身特性的深刻展现及发展。因此,在公共管理实践中,必须在大数据的语境下,用大数据的思维方法理解和分析新的治理问题。
3.1信息技术是一种社会赋权工具,大数据造就了一个权力碎片化的社会
3.2大数据可以有效地降低社会发展中面临的不确定性和风险。
3.3大数据将极大的影响和改变政府的发展和竞争战略。
事实表明,大数据不仅仅影响的公众个体和企业组织,大数据也可以提升行业、经济体和社会的发展活力。为此,一方面,着眼于大数据时代的环境变迁,政府必须前瞻性地将政策的制定和实施与大数据的发展联系起来,政府必须解决人力资本、隐私保护、知识产权、信息共享、通信和技术开发等领域的一系列问题,以发挥大数据的价值潜能。另一方面,政府必须通过大数据来改造自身,通过政府机构跨部门的整合,通过不断学习和掌握大数据管理技术,挖掘和利用公共行政的海量数据,来改善和提高公共管理与服务水平。此外,大数据管理还将成为推动政务公开和政务监督的有效模式,以此来保障政府运作的合理性和合法性。
作者:王峥嵘单位:甘肃政法学院
1大数据时代概述
1.1大数据时代的思维方式
1.2大数据时代大学教育典型案例
2007年,美国科罗拉多州的WoodlandParkHighSchool的两个化学老师在课堂教学中采用了一种全新的教学方法,将教学内容制作成视频,有学生课前在家观看学习,教师在视频中布置作业,学生在课堂上完成作业,教师在课堂上对学生进行一对一的指导,结果是学生成绩提高,学习兴趣增加,得到了学生和家长的肯定,这种教学方法就是为“翻转课堂”。受“翻转课堂”的启发,2012年,麻省理工学院和哈佛大学联合创办了在线教育平台edX,斯坦福大学创办了Cours-era、Udacity,开创了大数据技术在大学教育领域应用的先河,现在MOOC(MassiveOpenOnlineCourse,大规模开放在线课程)已经成为了席卷全世界大学教育新风尚,斯坦福大学SebastianThrun与PeterNovig教授开设的“人工智能导论”课程,全世界有超过16万人在线注册学习,2.3万人通过了考试,成为大学教育世界化的典范,现在国际上类似的在线课程几乎涵盖了大学教育的各门学科。2013年,上海高校率先成立了中国的MOOC平台,随后,北京大学、清华大学加盟了edX。
2大数据时代大学教育的特点
3大数据对现代大学教育创新的积极影响
3.1更开放的校园
在大数据时代,大学校园的围墙只保留了其象征意义,大学教育通过网络的触手延伸到世界的每一个角落,大学更加兼容并蓄,包容性更强,大学不再是知识垄断的殿堂,而是知识交流、思想碰撞的平台。尤其是MOOC和edX已经在全世界高校范围内被广泛认可并使用的情况下,世界其他国家的学生完全不需要到国际名校去听令人向往的著名教授的课程,在网络上就可以实现了,所以高校教育在一定的意义上已经国际化了。
3.2更符合时代需求的教育理念
教育理念是教育的灵魂,在“有教无类”的教育理念指导下,孔子老师培养出了七十二贤人;没有蔡元培先生提出的“思想自由、兼并包容”的教育理念,就没有现在的北京大学。大学的教育理念应该是培养出有组织能力的人、能够独立做出理性判断的人、能够在繁杂的现象中发现规律的人、能够在激烈竞争的环境中生存发展甚至脱颖而出的人,大数据时代的来临给了现代教育工作者实现这一教育理念的绝佳机会。
3.3更具时效性的教学内容
3.4更具合作性的教学过程
3.5更具开放性的教学过程
3.6更有生命力的课堂教学模式
传统的课堂教学媒介是黑板,教师的教学工具是一支粉笔、一块黑板加一本讲义或教案,学生的学习工具是一本笔记加一支笔,教师埋头写,学生埋头抄。现在的课堂教学媒介大多都采用多媒体教学系统,但是无论课堂教学采用何种方式,其学生和教师互动的本质却不会改变,不断变化的是师生之间交流的媒介。大数据时代可以采用小班化、多师同堂、家庭课堂、网络课堂、MOOC等方式更灵活、更能激发学生学习热情的教学模式,运用大数据技术的课堂教学模式,把工业时代流水线式的课堂教学模式变为更符合现代市场经济所需求的人才培养模式。大数据时代课堂教学应该是教师对学生学习行为的支持和服务的具体化表现,进一步开发学生的逻辑判断能力和自组织学习能力,解放学生与生俱来的学习能力,而不是传统的教化和规训。
3.7更有效的教学评价体系
3.8更高效的社会信息反馈
4大数据时代给大学教育带来的挑战
5结语
大数据时代的大学教育创新以培养信息时代社会需要的人才为目标,这一阶段的大学教育结合信息时代的新技术将更具智慧,是对学生心智的全面开发,也是信息时展的必然选择。
作者:侯大为杨江帆单位:武夷学院福建农林大学
一、大数据时代思维模式及其在服装设计领域的体现
1.海量信息思维模式
2.新媒体思维模式
二、大数据时代对高校服装设计教育的启示
1.教学方式的变革
2.课程知识点的设置
3.侧重对学习过程的评价
三、大数据时代对高校服装人才培养提出的新要求
1.获取有效信息数据的能力
2.分析数据的能力
3.团队的建立和管理
作者:李霁单位:江汉大学设计学院
一、大数据时代学校管理环境的变化
以前学校用到的数据多是随机样本,随着大数据时代悄然而至,海量的数据源源不断产生,数据不仅更多,而且更为复杂,使学校管理的内外环境发生了质的变化,给学校的管理决策等带来了极大影响。学校管理模式面临挑战。大数据时代,数据成为学校发展的一种重要资源。学校掌握的数据越来越多,越来越活,数据的价值日益凸显。如何采集数据,并从学校办学行为数据中提取具有完整性和可用性的信息,进行科学决策,减少决策行为的盲目性?如何用数据来说话,让“隐秘”的数据回应教育规律和学校文化?如何利用大数据为师生服务,维护师生的隐私,保证各种数据资源的安全?……这些都是每一个学校管理者必须面对的问题。这些变化催生了学校管理模式的变革。教育信息化建设重点的转移。
二、大数据时代学校管理的发展趋势
“不会量化就无法管理。”大数据时代的学校管理更加强调数据依赖、数字化管理。大数据为学校管理者提升管理服务的质量和水平创造了良好的条件。学校管理的数据观念大大强化。发展是学校的主旋律,科学管理是学校发展的助推器。大数据没有否定这一原则,而是强化了科学管理的数据观念。数据是学校发展的基石,也是学校决策的基础。数据忠实地记录着学校的办学行为,并通过网络传输到“云”中。学校办学理念的提炼、发展规划的制定、办学模式的形成、教育评价的完善等,都源于各种数据的挖掘、积累与整合,并以数据可视化形式加以体现。数据资源成为提高学校决策科学化、管理精细化的生命基因。如果缺乏对学校管理数据资源的挖掘、掌握和利用,就谈不上实施科学有效的管理,更不用说要赢得未来的竞争。学校管理内容的拓展。
三、大数据时代学校管理的对策与建议
大数据的出现是社会进步、技术发展的必然结果。大数据对于学校的发展既是机遇,也是挑战。直面还是逃避?这是学校管理者必须思考的问题。
1.增强大数据意识
大数据承载着师生的需求,反映了师意学情。大数据意味着学校管理的重生,大数据正在颠覆传统的教育发展模式。学校管理者应抢抓这一机遇,树立大数据思维方式,善于透过忠实记录现实教育教学活动的数据,发现背后内在的教育规律,以数据管理推动科学决策,推动学校各项改革与发展。
2.推进大数据发展战略
第一,从学校发展战略上理解大数据的价值,更加注重教育信息化发展规划与建设,重视教育信息技术的创新,重视数据采集环境建设及其数据资源的开发与利用、分析与整合。第二,从数据资源的质量层面看,教育信息化的发展使学校已经具备大数据的基础条件,但是目前普遍存在的问题是数据质量参差不齐、数据整合不深入、数据利用率低等。许多学校的数据分析、利用仍停留在初级水平,数据很难被发掘利用也反映了在系统建设和使用过程中的数据不准确、不精确、不一致等诸多质量问题。因此,改进数据建设质量成为学校发展的当务之急。第三,在数据资源应用上应加强数据信息共享平台建设,使更多的数据可视化,降低数据的复杂性,助推数据资源共享,满足公众对数据的需求,重构并优化学校与公众、学校组织与员工之间的关系,提升学校形象,增进学校的美誉度。
3.创建大数据实现机制,提高从数据到决策的能力
首先,科学的教育决策既需要创新思维,又需要大数据的支撑。加强数据资源库建设,优化、整合现有的学校信息管理系统,是建构大数据实现机制的前提和基础。其次,大数据时代,教育信息资源极其丰富,数据被大量产生、汇集,快速地流动更新、存储。大数据的核心不在于拥有数据,而是拿数据去做什么。为适应这一变化,学校管理者必须掌握数据分析与数据处理的技能,创新数据处理技术,提高数据分析和处理能力,同时充分发挥数据分析专家的作用,建设高效的数据治理机制,充分挖掘大数据带来的新价值。再次,以建设数据开放机制为契机,用数据说话,重塑学校教育质量和办学效益评价体系,以评促建,以数据纠偏,提升学校的办学水平和办学效益。
作者:李忆华阳小华单位:湖南南华大学政治与公共管理学院湖南南华大学校办
一、大数据催生了思想政治教育传播的新环境
大数据在本质上而言,是人与人之间的隐性沟通,包含着数据发送者与接收者之间“给”与“受”的过程,是人与人之间的互动行为。但是这种隐性沟通完全不同于传统的语言、肢体等沟通方式。大数据时代下,隐性沟通是以计算机、网络等硬件为基础的,以数据及其运算为依托的,主要通过信息传递、服务宣传等手段,以挖掘用户需求,并迎合用户的心理诉求,最终实现互利双赢效果的新型沟通形式。不论是用户在网络上内容产生的数据,或是用户运用鼠标、键盘在网络上留下的数据痕迹,只要通过分析整合,就可以与用户进行一种隐性的对话,预测用户的需求,并进行推送服务,以不断满足用户的需要。事实上,这其中所蕴含的深层沟通逻辑关系并没有改变,但实现方式却发生了天翻地覆的变化,不仅降低了沟通的成本,而且提高了沟通的效率。总而言之,大数据时代的来临使信息传达的范围、传递的速度与传播的效果都发生了前所未有的变化,正深刻影响着思想政治教育传播形式的变革,已经成为思想政治教育传播无法回避和拒绝的新环境。
二、思想政治教育的微传播化
1.思想政治教育传播载体的迷你化
2.思想政治教育传播信息的精简化
3.思想政治教育传播受众的细分化
4.思想政治教育传播结构的扁平化
在大数据时代,随着信息传递渠道的多元化、信息传递数量的极大化,思想政治教育传播也逐渐由逻辑清晰、管理严密、分工细致的科层结构过渡到以个人媒体为代表的扁平网络结构,每一个拥有传播载体的对象都是一个传播节点,每个人都在进行自己的二次传播。思想政治教育微传播中,传播者不再局限于专门从事思想政治教育的人,传播的专业门槛大大降低,最普通的对象也可以作为教育信息的制作者与传播者参与到信息的传播过程中来,并且传播者与受众的位置经常互换、重叠并且逐渐变得模糊,他们既是某些教育信息的传播者又是另一些信息的接收者。人人在对话中实现决策参与,成为传播活动的主体,这就使思想政治教育传播活动更加便捷、高效、平民化。
三、思想政治教育微传播的应对之策
大数据时代的到来使思想政治教育微传播呈现出速度快、精准性强、互动性好等诸多特点,但大数据也是一把双刃剑,其负面作用不容小觑。因此,在思想政治教育微传播的过程中,要树立起大数据思维,培养良好的数据处理能力,从而顺应大数据时代的潮流,切实推进思想政治教育的微传播。
1.树立大数据思维,警惕“信息茧房”
大数据时代,信息的碎片化、受众的细分化容易给思想政治教育的微传播带来“信息茧房”效应。所谓“信息茧房”是指受众往往根据个人的需求和兴趣对信息进行片面择取,选择个人偏爱的主题和观点,喜欢与自身兴趣相投的“他者”进行交流,长此以往,就会将自身桎梏于像蚕茧一般的“茧房”中。在这个自我建构的信息脉络中,个人容易因为他人“赞同性”的暗示而逐渐放大自己的偏见,盲目自信,从而错过一些新的或者相反的信息,导致视野狭隘,个人价值观呈现出碎片化,有时甚至会产生极端主义现象。诚如桑斯坦所说:“生活在茧房里,他们就不可能考虑周全,因为他们自己的先入之见将逐渐根深蒂固。”而同时,持不同观点的各个集团间又容易形成话语隔阂,分化明显,认同困难,社会黏性缺失。这些都增添了思想政治教育微传播的困难。因此,要提升微传播的精准度和凝聚力,迫切需要思想政治教育传播者树立起全面性、模糊性、开放性思维,走出自己的固有思维,为思想政治教育的微传播提供强有力的支撑。
首先,形成全面性思维。大数据时代,记录、存储和分析数据的技术已经大为提高,要求收集全面而完整的数据,只有对数据的全面掌控才能真正挖掘数据的潜在价值,进行精准预测与传播。在思想政治教育微传播中,虽然实时快捷,却以屏蔽开阔的信息视野为代价,造成传播内容的片面性和片段化,影响到教育对象接收信息的广度与深度。同时,教育对象思想的复杂性也要求思想政治教育传播者树立起全局性思维,形成系统意识。因此,思想政治教育传播者应自觉掌握教育资源库、视听觉媒体、各类搜索引擎、社会性软件及其他各类数据库的海量数据,并进行系统的分析与整合,努力为不同思想观念、不同价值取向、不同生活习惯的教育对象提供量身定制的教育信息和服务,同时又要涵盖多方面的内容,使之成为多种要素协同作用的有机整体,从而对教育对象的思想特征、认知能力、话语倾向、发展需求等方面进行全面把握和积极引导。因此,“在任何细微的层面,我们都可以用大数据去论证新的假设”,“它让我们能清楚分析微观层面的情况”。
最后,建立开放性思维。开放性之所以作为思想政治教育微传播的重要思维方式,是由当前大数据环境下数据产生与信息传播的广阔性、多元性、动态性所决定的。“现时代是一个开放的时代,突破了过去自然经济、计划经济条件下人际环境的小天地,结束了长期以来疏于交往的封闭状态。随着信息技术特别是信息网络技术的发展,社会信息化、网络化的特征越来越明显。”这就要求在思想政治教育微传播过程中,人们对传播信息要有特殊的感受力以及价值的判断力,多与不同意见的人交流,有效消除隔阂,形成共同经验,避免因信息割裂带来的“信息茧房”现象。同时,思想政治教育传播过程中产生的错综复杂、日新月异的数据存在着千丝万缕的联系,也需要传播者具有开放性思维。
2.增强数据处理能力,缩小“信息鸿沟”
首先,尽可能搜集全体数据。大数据具有多样性、多源性,既有传统的结构化数据,也包括网站日志数据、社交媒体中的文本数据、图片、视频等诸多半结构化数据和非结构化数据。用以分析的数据越全面,分析的结果才越接近于真实。因此,思想政治教育传播者要与数据资源丰富的部门、媒体和企业建立良好的合作关系,掌握海量的、多方面的数据。
再次,对得出的分析结果作出合理解释,并进行科学预测。大数据时代,数据分析是关键,而数据分析结果的显示及预测更直接关系到教育对象对分析结果的接受程度,影响思想政治教育微传播的效果。因为,如果正确的分析结果没有得到适当的显示和解释,就难以让教育对象信服,甚至会产生信息误读。因此,在思想政治教育微传播过程中,我们可以引用可视化技术,其在一定程度上能够用更生动形象的方式向教育对象展示分析结果,并采用人机交互技术,使教育对象理解并参与到具体的分析过程中来。同时,我们还要通过正确的数据分析,找出事件之间的关联性,并对事件的发展走向及趋势进行预测,最终提升思想政治教育微传播的效果。
因此,大数据时代,我们不仅需要海量数据,更需要对海量数据进行挖掘、处理与管理。只有不断提升人们对数据的处理分析能力,才能将海量数据不断转化为思想政治教育微传播的重要资源,使微传播过程得到较好的分析、控制和预测。
作者:刘辉单位:北京大学马克思主义学院
[摘要]
随着信息时代的快速发展,大数据逐渐得到各行各业的重视。心理学中有很多研究表明大数据对技术的高效率,如果将其运用到心理学研究领域能带来意想不到的效果和作用。基于此,本文针对大数据时代的心理学研究变革,探讨大数据时代对心理学产生的影响和作用。
[关键词]
大数据;心理学研究;变革
和传统的数据库管理相比,大数据具备搜索快速、信息齐全、共享资源等优点,更是很好地解决了数据冗余的问题。随着时代的发展,大数据在很多行业、学科等领域得到了重视。近年来,大数据在心理学研究领域也有很多的作用和效果,心理学能够通过事物的表象反映出事物的内在特性,当然也需要对表象进行大量的研究分析,大数据在其进行研究分析方面起着不可估量的作用。
1大数据
1.1大数据的特点
1.2大数据的用途
目前,虽然大数据在心理学研究领域并没有得到广泛的普及,但大数据技术上已经是相当普遍了,大数据在心理学方面的研究是大数据科学性的一种体现,它主要是发现和验证大数据的实际应用。同时,其在天文学、基因组学、生物等其他复杂的科研中应用广泛,是不可忽略的。通过研究者的不断改善和革新,大数据将会给各行各业带来不可估量的作用和效果。1.3大数据于心理学研究利用大数据开展心理实验研究已经是水到渠成。2014年一项针对Facebook大量用户的情绪调查研究表明,情绪对心理的影响,利用大数据把研究结果进行分类。令人惊讶的结果出现了,在主要接受积极情绪的人群中,积极向上是人们主要的想法。在接受了较多的消极情绪后,原本积极的人都会慢慢就变得消极。在以前的心理学研究中收集近70万个样本,将耗费巨大的人力与物力,而大数据技术却能够轻易的做到。
2心理学
2.1心理学的特点
人都是通过刺激下丘脑产生各种情绪,不管是何种表现都是表象,内在的情感需要通过心理学研究进行探究,心理的变化和发展是重点考虑的因素。大多数人都很排斥心理学家,认为他们是能轻易地探究人的内心。然而,在真实的心理学界并不存在人们普遍的这种想法,心理学家必须通过人们的行为举止,推测他们的心理,以逐渐推断出人心里真正的想法。心理学对于保持人们思想的积极性有着很大的促进作用,并有助于人们的身心和身体健康。
2.2心理学的研究逻辑
2.3心理学传统的研究方法
2.4心理学研究的载体
量表和问卷作为心理学研究中的主要载体,需根据自身的情况,回答问题以让别人获取信息,信息的准确度取决于提供信息的人。这受表达者表达方式的限制,而情景式和投射式的量表,可以很自然地避免这种限制。情景模拟可以直观地反应人在这种情况下的行为,这时的行为是由下丘脑直接控制发出的,具有较高的真实性。投射测量会向被研究对象提供一些刺激情景,被研究者自由表达,分析其反应推断其人格特征。这几种工具载体被积极地应用于研究各种心理学问题,同时还有很多专门针对某种研究的载体工具,不同的载体在针对不同问题时,能发挥其独特的作用。近些年来,随着认知精神科学的兴起,记录神经方面的设备和技术也得到了很好的应用和发展。
3大数据时代的心理学研究
3.1大数据时代的网络运行
3.2剖析心理
研究表明人在接受某项服务或者用过什么产品后,一定会在心里产生一个想法,这可以归纳为人的主观心理感受。用户在使用某种产品上会产生海量的使用记录,大数据方法能筛选出一些类似的记录提供给需求者,快速、有效地使研究者得到数据的有效值,有利于加快研究的进度,同时尽量准确地得知用户的想法,尽最大能力满足用户的心理需求。
3.3避免错误
个体或者群体行为数据的逐渐增多,可以通过大数据进行心理行为分析,这能反映出比较大众的认知和感受,群体情绪的好坏能直接影响处理事情的能力,也有利于把握大事件的走向,避免由于数据调查精确性低导致恶性事件的发生。
3.4在线心理干预
心理干预在心理学研究中对人是很有效果的,但是执行人员的不足让心理干预不能同时进行,需要耗费大量的资源。然而运用大数据技术在网络上进行快速有效地信息获取,能提高流程的速度,这样的在线心理干预能大面积进行,也会提高效率。
3.5在线心理测评
4心理学研究的新动力
在信息时代的今天,心理学的研究离不开大数据采集信息的技术,对于人类行为等的预测,是心理学研究的重要目标。而现今的心理学虽然已经有了很多研究成果,但仍然需要继续在研究的路上不断创新和前进,这对人类未来的发展有着很积极的作用。从某方面来说,行为预测这种外部表现是决策的关键。如果人们在研究结果上不过度加以解释的话,大数据方法将能直接通过群体的行为来进行数据分析,这可以对研究起到较大的帮助。心理学在逐渐发展的途中,需要的不仅是列出一大堆的课题研究,更需要考虑使用高效的方法去进行研究。
作者:张振国单位:山西农业大学信息学院
关键词:大数据;教育管理模式;变革路径
1大数据时代下进行教育管理模式变革的必要性
1.1教育管理模式变革是时代的发展必然
1.2大数据时代教育管理模式中存在问题
2大数据时代实现教育管理模式变革的路径探析
2.1转变教学管理工作者思维,提高大数据管理素养
2.2利用大数据平台,实现教育的个性化管理,提高管理的时效性、协调性等
综上,大数据时代,出于社会发展,学校发展和人才发展的需要,教育管理模式必须要实现变革。虽然目前教育管理模式革新中存在不少的问题,但只要积极主动地利用好大数据,学校、老师和学生积极配合,就可以将变革事业朝着更好的方向推送。