人工智能京东广告研发近期入选国际顶会文章系列导读——CIKM2023篇京东云技术新知

排序算法、多模态算法是推荐系统中的关键组成部分,用于根据用户的兴趣和历史行为来推荐个性化内容。以下是近年来的演进:

近年来,深度学习在排序算法中的应用迅速增加。通过使用深度神经网络来建模用户和物品之间的复杂关系,推荐系统能够更准确地理解用户的兴趣。这些方法包括各种神经网络架构,如卷积神经网络(CNN)、循环神经网络(RNN)和自注意力机制(Transformer)。例如,YouTube的深度学习排序模型可以根据用户的观看历史和行为来推荐视频。

推荐系统越来越注重对用户行为序列的建模。这意味着算法不仅考虑用户当前的兴趣,还考虑他们的历史行为。这可以通过RNN、LSTM(长短时记忆网络)等模型来实现。这使得推荐系统能够更好地理解用户的演变兴趣,例如新闻阅读历史或商品浏览历史。

自监督学习方法在排序算法中也有广泛应用。这种方法通过从未标记的数据中自动生成标签来进行训练。例如,通过使用用户点击行为生成正样本和负样本,可以训练排序模型。这种方法降低了标记数据的依赖性,提高了模型的可扩展性。

当数据分布存在显著偏移时,长期信息将被丢弃,这会损害推荐性能。传统方法通过基于模型的持续学习方法来解决这个问题,而没有分析在线推荐系统的数据特性。为了解决上述问题,我们提出了一种带有数据驱动先验(DDP)的在线推荐系统增量更新框架,它由特征先验(FP)和模型先验(MP)组成。FP对每个特定值进行点击率估计,以增强训练过程的稳定性。MP根据贝叶斯法则,将先前的模型输出合并到当前更新中,从而得到一个在理论上可证的用于稳健更新的先验。通过这种方式,FP和MP都被很好地集成到统一框架中,该框架与模型无关,并且可以适应各种先进的交互模型。在两个公开可用的数据集以及一个工业数据集的大量实验证明了所提出框架的卓越性能。

为此,我们提出了一个具有数据驱动先验(DDP)的稳健统一增量学习框架,以改进现今主流的训练框架下的性能。它以端到端的方式整合了特征先验,并提供了更具理论证明的模型先验。具体而言,特征先验旨在明确估计特定特征值的平均CTR。在特征粒度上,CTR值的分布比实例级别上的分布更稳定,因为数据更集中在每个特征上。特征先验最终起到辅助特征信息的作用,并为模型的更新提供更稳定的学习方向,从而有利于优化长尾项目。此外,基于贝叶斯法则,我们构建了模型先验,通过在增量数据上最大化似然函数,并降低当前模型到先前模型的函数空间距离,来近似完整数据上的后验估计。因此,可以将以前模型的输出轻松集成到框架中,以实现模型先验,其中以前模型的输出用于监督当前模型。

1.3.1预备知识

1.3.2框架总览

我们提出了一个统一的框架,即基于数据驱动先验知识的增量更新框架(Data-DrivenPrior,DDP),它由两个重要组件组成,如上图所示:

这两个基于数据驱动的部分可以轻松集成到现有的先进模型中,从而产生一个与模型无关且通用的框架。此外,该框架可以以端到端的方式进行更新,很容易集成到在线推荐系统中。

1.3.3特征先验

先前的研究采用朴素的持续学习方法,通过利用基于模型的信息帮助学习每个实例的CTR。一个主要的问题是增量更新所加剧的极度数据稀疏问题。模型参数对这些数据非常敏感,稀疏的数据会导致模型的不稳定性,从而使其过度拟合最新的数据。直观上,实例中的特征数据出现更加频繁,估计结果比实例本身更加稳定。因此,我们受到启发,设计了一个模块来估计特征的CTR值,并将其作为稳定且有用的信息输入CTR模型,以提高推荐系统的性能。这种特征级别的值可以泛化到长尾项目中,使CTR模型能够更准确地估计长尾特征。为此,我们提出了特征先验(FP),它可以为每个特征维护长期的先验信息,从而更稳定地表达长尾特征。

其中,Concat()表示连接函数。通过这种方式,特征先验被很好地集成到原始的嵌入模块中,然后通过任何交互模块来捕捉不同特征之间的交互。

1.3.4模型先验

我们在公开数据集上做了大量实验,实验效果如上表格所示,我们的最终框架DDP和只引入特征先验的FP,在Criteo数据集和CIKM2019数据集上,增量学习下的整体表现和在长尾表现都体现了我们方法的优越性。同时,长尾数据上的效果证明了特征先验在长尾数据上估计的稳定性。

2.3.1CTR预估模型

2.3.2群体信息选择

2.3.3群体表示学习

2.3.4群体参数生成

2.3.5损失函数

一般来说,协同过滤通常是利用学习到的代表用户和商品潜在特征的嵌入/表达(Embeddings)进行融合以预估出用户对商品的偏好/交互概率,而融合手段通常是内积,欧式距离,或者多层感知机。因此,如何得到特征富有表现力的用户/商品嵌入对于预测准确性至关重要。早期的协同过滤算法,例如矩阵分解(MatrixFactorization),大多直接将用户/商品ID投影到嵌入向量。后来,许多工作通过在嵌入表达学习中引入用户的历史交互行为,以增强目标用户嵌入。

近年涌现了许多基于图卷积神经网络(GraphConvolutionalNeuralNetwork,GCN)的协同过滤算法的新兴研究,这些研究通过用户-商品之间的多跳连接进一步增强了嵌入表达能力。具体而言,协同过滤的数据可以天然的用二分图组织:用户u和商品i作为节点,交互行为作为边。节点u/i的k阶特征是由k层堆叠的图卷积层聚合而来,汇总了其k跳邻域内的信息。而这样k跳邻域形成了一个树状结构,用户/商品树。图1(a)给出了推荐系统中图卷积的双树结构。

尽管基于GCN的协同过滤算法已经被广泛研究,但现有的方法都有一个主要的局限:在协同过滤层进行最终融合之前,用户树和商品树缺乏交互。这主要归因于现有的聚合方式大都继承自传统的针对节点分类任务而提出的GCN算法。然而,推荐任务和分类任务是十分不同的,它并未要求对用户或者商品进行通用刻画,如用户购买力或是商品评分,而是需要用户和商品的交互特征,即用户选择商品时的考量或是商品吸引用户的部分特性,来进行用户商品偏好预估。

现有方法仅在最终融合用户商品表达,这样的次优结构缺乏对有价值的交互特征的捕捉,导致它们在用户商品偏好预估上效果有限。当要预估用户对某个商品的偏好时,用户树和商品树独立地聚合自己的邻居来学习各自的表达。因此,用户树聚合时无法感知目标商品,反之亦然。现有的图注意力方法大部分都应用于节点包含丰富信息的图中,并不适合用户-商品这样的只包含ID类特征的二分图。并且,注意力机制的权重的计算也局限在中心节点和它邻居之间,即自注意力机制。

考虑到后融合用户商品高阶特征带来的负面影响,本文提出了一种交互式图卷积网络结构(InteractiveGraphConvolutionalNeuralNetwork,IA-GCN),用于基于协和过滤的推荐系统。它采用了一种早融合方式,通过在用户树和商品树之间建立交互引导来提取交互特征,可以为用户提供更为有效精确的个性化推荐服务(参见图1(b))。

本文提出的IA-GCN是业界首个在推荐系统领域针对动态交互式图卷积网络的尝试。IA-GCN利用外部注意力机制,强调特定于目标的信息,可以以端到端(end-to-end)的方式与各种已有的基于图神经网络的协同过滤算法相结合,兼备可解释性和可扩展性。我们在三个基准数据集的广泛实验以及和多个sota基线的对比,验证了BI-GCN的有效性和优越性。

海报布局的生成旨在预测图像上视觉元素的位置和类别。此任务对于海报的美学吸引力和信息传播起到了至关重要的作用。创建一流的海报布局需要同时考虑到布局元素的彼此关系和图像组成,因此这项要求很高的任务通常由专业设计师完成。但是人工设计是一件既耗时又费财的事情。为了以低成本生成高质量的海报布局,自动布局生成在学术界和工业界越来越流行。

针对上述问题,我们提出了一个关系感知扩散模型用于海报布局生成领域,该模型同时考虑了视觉-文本和几何关系因素。由于扩散模型有在许多生成任务中取得了巨大成功,我们遵循噪声到布局的范式,通过学习去噪模型逐渐调整噪声来生成海报布局。在每个采样步骤中,给定一组以高斯采样的框分布或最后一个采样步骤的估计框为输入,我们通过图像编码器提取RoI特征作为生成的特征图。然后是视觉文本关系感知模块(VTRAM)被提出用于建模视觉和文本特征之间的关系,这使得布局结果由图像和文本内容同时决定。与此同时,我们设计一个几何关系感知模块(GRAM)基于RoI彼此的相对位置关系增强每个RoI的特征表达,这使得模型能够更好地理解布局元素之间的上下文信息。受益于新提出的VTRAM和GRAM模块,用户可以通过预定义布局或改变文本内容以控制布局生成过程。

由于文本信息在原始CGL-Dataset的测试集中没有提供,所以我们另外收集1035张带有可用文字描述的海报图像来替换原来的测试集。如图(c)所示,收集海报图像的处理方式与训练集相同进而获得干净的背景图像。与此同时,我们收集了当前商品的所有促销信息以分析不同文字内容对于海报布局的影响。由于收集到的文字内容聚焦于电商领域,我们使用基于海量电商文本语料预训练的模型来提取文本特征。

我们的方法的概述如上图所示。方法由四部分组成:特征提取器、视觉文本关系感知模块(VTRAM)、几何关系感知模块(GRAM)和布局解码器。特征提取器分别提取文本和图像的特征,VTRAM模块建模布局的视觉和文本关系,GRAM用于增强RoI特征的彼此位置关系表达能力。最后,基于VTRAM和GRAM的输出以及RoI特征,布局解码器预测元素的坐标和类别。

4.4.1基于扩散模型的海报布局生成

扩散模型是一类使用马尔可夫链将噪声转换为数据样本的概率生成模型。如图所示,我们将海报布局生成问题作为一个噪声到布局的生成过程,通过学习去噪模型以逐步调整噪声布局。因此扩散模型生成的海报布局也同样包括两个过程:扩散过程和去噪过程。给定一个海报布局,我们逐渐添加高斯噪声以破坏确定性的布局结果,我们称这个操作为扩散过程。相反给定初始随机布局,我们通过逐步去噪的方式获得最终海报布局称为去噪过程。

4.4.2基于扩散模型的海报布局生成

图像编码

给定一个干净的背景图像,我们使用ResNet-50与特征金字塔网络(FPN)提取视觉特征。ResNet-50由于在计算机视觉方面的卓越性能已获得广泛应用。除此之外,我们使用FPN生成多尺度特征图,中包括从低到高级别的图像特征。基于,我们用前面提到的噪声布局提取RoI特征如下:

=(,),

其中的形状为(,,)。在训练阶段,RoI特征来自添加高斯噪声的真实布局,推理阶段来自随机布局的去噪。

文本编码

给定海报上所有的商品宣传标语,我们先通过预训练方法RoBERTa提取文本特征。我们注意到产品的宣传标语不是简单的重复产品名称,而是突出它的卖点。针对这个问题,我们从电商平台收集了2亿商品语料进行预训练,这使得模型预测卖点更准确。同时为了让模型感知文本长度和布局之间的关系,我们补充了文本长度embedding作为特征表示的一部分。最后我们融合内容和长度特征作为文本编码器的输出。

4.4.3视觉文本关系先验模块

代替直接concat视觉和文本特征,我们设计了一个视觉文本关系感知模块来实现图像和文本的域对齐。该模块能够感知视觉和文本元素之间的关系并使其充分利用图像和文本的特征信息,这让模型对于内容有了更全面的理解。为了确保文本数量恒定,我们采用填充向量方法以达到固定数量,这样处理的好处是模型具有处理不同长度文本信息的能力。

4.4.4对齐关系先验模块

我们通过结合去噪过程的结果和图像特征构建RoI特征,但是这些RoI特征是独立的。为了加强RoI之间的位置感知关系,我们设计了几何关系感知模块(GRAM)让模型更好的学习内容信息关系图形元素之间,具体细节如下:首先,给定个RoIs,两个盒子和(,∈{1,2,...,})的相对位置特征计算方式如下:

需要强调的是不同类型元素应该有不同的定位策略,例如垫层应覆盖在文本类型元素上但是其他种类的元素之间应避免重叠,因此我们提取RoI特征作为元素的类别信息。为了合并位置和类别信息,提取视觉特征被展开并且被投影函数P转换为维度的向量。最后,视觉embedding乘以几何权重进而得到最终的几何特征:

其中,V′是V的展开形式。

4.4.5布局解码器

与目标检测任务类似,布局解码器用于预测各种元素的类别和坐标信息。我们基于VTRAM和GRAM的融合结果以及RoI特征构建布局解码器的输入,然后这些融合的特征会被送入坐标回归器和类别预测器获取最后的结果,最后我们用坐标回归损失和分类损失指导模型学习。除此之外,为了避免预测框彼此过度重叠,我们采用giou损失作为补充,最终的损失函数形式如下:

4.5实验结果

4.5.1定性效果对比

4.5.2定量效果对比

内容无关方法的对比

内容有关方法对比

相信未来,研究和工程界需要继续努力以解决这些问题,以推动这些领域的发展。

THE END
1.在线深度学习:在数据流中实时学习深度神经网络机器之心与经常在浅层神经网络中最优化一些凸性目标函数的传统在线学习(例如,线性的/基于核的假设)不一样的是,在线深度学习(ODL)更加具有挑战性,因为深度神经网络中的目标函数的优化是非凸的,而且常规的反向传播在实际过程中也不能很好地奏效,尤其是在线学习的设置中。在这篇论文中,我们提出了一种新的在线深度学习框架,https://www.jiqizhixin.com/articles/2017-12-30
2.学界腾讯提出并行贝叶斯在线深度学习框架PBODL:预测广告系统的近日,腾讯发表了一篇介绍并行贝叶斯在线深度学习(PBODL)框架的论文,该论文表示这一框架已经用于腾讯广告系统的点击率预测,并获得了稳定高效的性能。该论文还详细推导展示了 PBODL 框架,并在实际试验中证明了 PBODL 相对于其他在线模型具有更好的表现。机器之心简要地介绍了该论文,具体的推导及试验细节请查看原论文。https://cloud.tencent.com/developer/article/1118451
3.非常详细地说明一下常见的人工智能学习框架基于人工智能框架1.TensorFlow- 由 Google 开发,是一个广泛使用的开源深度学习框架。 - 特点:具有高度的灵活性和可扩展性,支持多种编程语言,如 Python、C++ 等。提供了丰富的模型和算法库,适用于大规模数据处理和分布式训练。 - 优势:拥有强大的社区支持,大量的预训练模型和教程可供使用。能在各种硬件平台上运行,包括 CPU、GPU https://blog.csdn.net/make77/article/details/143361646
4.探究社区框架下在线学习临场感研究这些问题的出现原因固然是多方面的,本研究主要从临场感角度出发,在探究社区理论框架下,以如何提高在线学习效果为线索,对在线学习过程中的临场感问题展开全方位的调查。通过对《小学语文课程与教学》这门在线课程进行个案分析,发现在线学习临场感三个要素在具体实践情境中的特征及作用,证实了在线学习临场感对学习者的学习https://cdmd.cnki.com.cn/Article/CDMD-10718-1020005264.htm
5.终身学习视角下用户持续在线学习意愿影响因素研究——基于MOA理论【摘? 要】以终身学习的视角,探讨在线学习持续使用意愿的影响因素,以期促进在线教育的健康和可持续 发展。基于MOA理论框架构建了在线学习持续使用意愿影响因素模型,通过问卷调研获取382份有效样本,采用结 构方程模型分析验证用户持续使用在线教育意愿的影响因素和作用路径。结果表明,对在线学习持续使用意愿影 响最大的是https://openlearn.bjou.edu.cn/info/1069/1809.htm
6.9.3网络架构搜索斯坦福21秋季:实用机器学习中文版这个整个环用的就是RL(强化学习)【Agent做了一个行动,每行动一次就看下环境给出的反馈,通过反馈更新Agent】,好处:不管是什么套上RL之后可以在整个框架上显得比较优美的,坏处:十分昂贵; 课件上的参考资料:Neural Architecture Search with Reinforcement Learning(https://arxiv.org/abs/1611.01578) https://www.bilibili.com/read/cv14505725/
7.链路层的双链路大型服务器的优化体系51CTO博客数据和模型是算法的两大核心,14年基于Pora我们现实了数据的实时更新。15年我们又在Pora上开发了基于Parameter Server架构的在线学习框架,实现了模型的实时更新。 why在线学习? 在batch learning中,一般会假设样本独立服从一个未知的分布D,学习得到的模型都是基于该分布的,如果分布变化,模型效果会明显降低。而在实际业务https://blog.51cto.com/dujinyang/5225694
8.深度解析2024年机器学习框架对比:PyTorchvsTensorFlowvs机器学习框架是实现机器学习算法的软件工具,为开发人员提供了各种功能和工具,使他们能够更轻松地构建、训练和部署机器学习模型。在机器学习框架中,PyTorch、TensorFlow和JAX是最受欢迎的框架之一。本文将对它们进行深入比较和分析,以帮助程序员更好地选择适合自己需求的框架。 https://www.jianshu.com/p/9f4914b90b33
9.易学堂在线学习系统v3.1.0易学堂在线学习系统 v3.1.0评分: YxtCMF在线学习系统是一个以thinkphp+bootstrap为框架进行开发的网络学习平台系统。 在线学习系统,为现代学习型组织提供了卓有成效的学习与培训方案, 能够通过在线学习和在线评估的方式轻松完成针对员工制订的培训计划,能够轻松建立自己的网校! 1、设计理 https://www.iteye.com/resource/weixin_38750999-13239700
10.百科荣创机器学习与应用 已更新至50讲 深度学习框架应用开发-TensorFlow 2.0 已更新至38讲 人工智能应用开发实战 已更新至28讲 嵌入式系统应用(龙芯版) 外链课程 Android AI应用与开发—项目式教学 已更新至36讲 嵌入式微控制器应用开发∣项目实战 已更新至55讲 https://www.r8c.com/index/study.html
11.Java实战之课程在线学习系统的实现java本文将采用SpringBoot+Spring+Mybatis+Thyeleaf实现一个课程在线学习系统,采用SpringBoot框架实现 前台模板用的thymeleaf数据库层采用mybatis框架注解模式,感兴趣的可以了解一下+ 目录 一、前言 项目介绍 采用SpringBoot+Spring+Mybatis+Thyeleaf实现的在线学习系统,一共2个身份。 管理员登录系统后可以管理所有用户信息,https://www.jb51.net/article/244287.htm
12.毕业设计之python系列基于Flask的在线学习笔记的设计与实现本文主要研究基于Flask框架的在线学习笔记系统的设计和实现。具体内容包括系统的需求和功能分析、技术架构设计、数据库设计、前端页面设计和后端代码实现等方面。通过本文的研究和实现,旨在提供一种可行的在线学习笔记系统方案,为学生和教师提供更好的在线学习和教学体验。 https://developer.aliyun.com/article/1260442
13.蚂蚁金服新计算实践:基于Ray的融合计算引擎架构蔡芳芳但是在线计算概念出来以后,就意味着我们的数据计算要和数据业务放在一起,所以整个部署架构、容灾体系、SLA 标准,都需要全面改变和提升。 InfoQ:与传统在线学习框架相比,蚂蚁金服的在线学习系统在哪些方面做了优化? 周家英:传统的机器学习是离线的机器学习,它的特征是迭代周期非常长,数据计算是以天或小时级别来进行的,https://www.infoq.cn/article/ualTzk5OwDb1crVHg7c1
14.在线学习简单构建石头木构建一个简单的在线学习pipeline,主要包括样本的生成,模型的训练等。众所周知腾讯开源的一个框架叫angel以及阿里的alink,这两个框架有很多算法模型,可以拿来直接使用。这里面当然也有像FTRL这样的在线更新模型,后期有机会可以利用angel和alink进行相关测试。 大数据处https://www.cnblogs.com/little-horse/p/12051566.html
15.标准库Web应用框架人工智能数据库图片处理机器学习C++ 资源大全中文版,标准库、Web应用框架、人工智能、数据库、图片处理、机器学习、日志、代码分析等。由「开源前哨」和「CPP开发者」微信公号团队维护更新。 - jobbole/awesome-cpp-cnhttps://github.com/jobbole/awesome-cpp-cn
16.cube传统机器学习: ray-sklearn分布式, xgb单机训练推理 传统机器学习算法: ar/arima时间序列算法/random-forest/random-forest-regression/lr/lightgbm/knn/kmean/gbdt/decision-tree/pca/lda/catboost/xgb/超参搜索 分布式深度学习框架: tf/pytorch/mxnet/horovod/paddlejob/mindspore分布式训练 https://gitee.com/data-infra/cube-studio