数据挖掘模型和挖掘步骤技术方案

随着中国电信的改革重组,中国通信业取得了跨越式的发展,成为国民经济中发展速度最快的行业之一,中国通信业总规模现已在世界排名第一。与此同时,中国通信市场竞争也日趋激烈。通信运营商的经营观念逐渐从"技术质量第一"向"服务客户第一"转化。以前的营销模式已经无法满足客户的多样化、层次化、个性化的需求。长期以来,通信单位大量详尽的业务数据也只是被简单地应用在各种业务系统中,没有被更有效地开发利用。如何利用这些数据进一步拓宽通信业务,促进通信业务发展,从而为通信业提供决策支持服务,已经成为各个通信单位的当务之急。

客户细分模型和挖掘算法选择

构建客户分类模型需要用到第2章所介绍的一些技术。其中聚类技术就是其中之一。在前面的章节中我们曾了解到聚类和分类有着很大的区别:分类时,我们事先选择一些属性作为分类标准,通信企业总是会将重要的、有影响力的属性作为分类的依据;而在实际应用当中,通信企业事先根本不知道哪些属性会起到作用。而找到那些起关键作用的属性是聚类技术的任务之一。在通信客户分析中,聚类分析能够帮助我们发现特征迥异的不同客户群和对客户分类起关键作用的指标变量,并辅助运营商对各客户类别的特征进行深刻观察。通信客户从营销属性方面分为三类:普通客户、价值客户和黄金客户,其中普通客户消费行为有较大的随机性,分布较广,规律难寻,比较适于聚类分析。

本数据挖掘实例采用通话行为、数据业务使用情况等作为客户分类变量,把通信行为相似的人群聚为一组。数据挖掘方法论选用CRISP-DM(Cross-IndustryProcessforDataMining)过程模型。即交叉行业数据挖掘过程标准。它从数据挖掘技术应用的角度来划分挖掘任务,将数据挖掘技术和实际应用紧密结合。CRISP-DM过程模型的主要步骤有商业理解、数据理解、数据准备、建立模型、数据挖掘、评价和实施以及结果发布,如图3-9所示。该过程的各个环节按顺序进行,但需要不断地循环往复进行数据探索和模型的调优。这里为了简化说明问题,先不考虑循环往复的探索和调优过程,直接顺序考察各个环节。

数据挖掘模型和挖掘步骤

在各种硬件条件和软件条件都具备的情况下,就可以开始进行挖掘的工作了。

1.数据准备

数据准备过程如下:

(1)确定项目目标,制定挖掘计划。

(2)分析变量的获取。

(3)数据收集和获取。(4)数据集成。

依据CRISP-DM流程,第一要确定项目目标,之后制定挖掘计划。首先必须明确项目的商业目标,这个目标应该是适于用选取的聚类分析方法来达到的。所定义的客户细分的商业目标是"对某地方数十万普通客户,从客户行为的角度进行客户分类,以了解不同客户群的消费行为特征,为发展新业务、原有客户挽留、对其他通信公司用户争夺的针对性策略的制订提供依据,并实现企业稳定现有客户量、提高客户增长量的战略目标"。

客户的消费行为和需求通过调查问卷以及访谈的方式来实现。

客户的通信行为以及需求特征类别见表3-1。

表3-1客户行为特征信息表

客户的通信行为

客户的需求特征类别

短消息使用次数

移动梦网使用次数

GPRS数据流量

方便性及信息实时性的需求

IP长途使用次数

优惠时段通话次数

套餐定制和使用次数

拨打10086次数

对资费的敏感程度

本地、长途、漫游呼叫时长

本地、长途、漫游呼叫次数

工作/休息时段、优惠/非优惠时段)

呼叫类型(主叫、被叫、呼叫转移)

对通话的多层次需求

服务种类

对个性化服务的需求程度

基于客户需求和上述行为特征信息表,定义了几组细分变量,d_代表时常,t_代表频率,见表3-2。在这里只列出通话形式和通话比例表。

表3-2细分变量表(简表)

通话形式

市话

d_local

t_local

省内长途

d_toll_InProvince

t_toll_InProvince

跨省长途

d_toll_BetweenProvince

t_toll_BetweenProvince

国际长途

d_toll_htm

t_toll_htm

通话比例

网内通话

d_mob_Ttl

t_mob_Ttl

联通通话

d_uni_Ttl

t_uni_Ttl

小灵通通话

d_phs_Ttl

t_phs_Ttl

d_fix_Ttl

t_fix_Ttl

2.数据准备

数据准备包括所有从原始的未加工的数据构造最终分析数据集的活动,是数据挖掘过程中最耗时的环节,甚至要占据整个数据挖掘项目一半以上的工作量。数据准备工作的流程如图3-11所示。

3.建立模型

在生成最终的数据集后,就可以在此基础上建立模型来进行聚类分析了。建立模型阶段主要是选择和应用各种建模技术,同时对它们的参数进行校准以达到最优值。在明确建模技术和算法后需要确定模型参数和输入变量。模型参数包括类的个数和最大迭代步数等。

不同的技术方案产生的模型结果有很大不同,而且模型结果的可理解性也存在较大差异。另外,对结果的分析和描述也很关键,不恰当的描述会造成误导。需要指出的是,不同的商业问题和不同的数据分布属性会影响模型建立与调整的策略,而且在建模过程中还会使用多种近似算法来简化模型的优化过程。因此还需要业务专家参与调整策略的制定,以避免不适当的优化造成业务信息丢失。

建立模型是一个螺旋上升,不断优化的过程,在每一次聚类结束后,需要判断聚类结果在业务上是否有意义,其各群特征是否明显。如果结果不理想,则需要调整聚类模型,对模型进行优化,称之为聚类优化。聚类优化可通过调整聚类个数及调整聚类变量输入来实现,也可以通过多次运行,选择满意的结果。通常可以依据以下原则判断聚类结果是否理想:类间特征差异是否明显;群内特征是否相似;聚类结果是否易于管理及是否具有业务指导意义。

4.模型评估

通过上面的处理,就会得到一系列的分析结果和模式,它们是对目标问题多侧面的描述,这时需要对它们进行验证和评价,以得到合理的,完备的决策信息。对产生的模型结果需要进行对比验证、准确度验证、支持度验证等检验以确定模型的价值。在这个阶段需要引入更多层面和背景的用户进行测试和验证,通过对几种模型的综合比较,产生最后的优化模型。

模型评估阶段需要对数据挖掘过程进行一次全面的回顾,从而决定是否存在重要的因素或任务由于某些原因而被忽视,此阶段关键目的是决定是否还存在一些重要的商业问题仍未得到充分的考虑。验证模型是处理过程中的关键步骤,可以确定是否成功地进行了前面的步骤。模型的验证需要利用未参与建模的数据进行,这样才能得到比较准确的结果。可以采用的方法有直接使用原来建立模型的样本数据进行检验,或另找一批数据对其进行检验,也可以在实际运行中取出新的数据进行检验。检验的方法是对已知客户状态的数据利用模型进行挖掘,并将挖掘结果与实际情况进行比较。在此步骤中若发现模型不够优化,还需要回到前面的步骤进行调整。

THE END
1.数据挖掘建模流程这一部分是从建模者的角度来讨论模型的部署问题,而在实际数据挖掘过程中,应该在挖掘者采用模型进行挖掘后,通过实际应用后再逐步完善实际需要的模型,然后最终确立模型后,才进行的模型部署过程。 在这里,建模者向需求方介绍模型并根据前面的步骤提供相应的建议。在有些情况下,建模者可能提出几个替代方案,让需求方从中选https://zhuanlan.zhihu.com/p/157650262
2.数据挖掘的前景和操作步骤首先,需要明确问题和目标。什么是您想要从数据中挖掘出来的信息?这个问题定义阶段是整个数据挖掘过程的基础,因为它将指导后续的步骤。2. 数据收集 一旦问题明确,接下来需要收集相关的数据。数据可以来自各种来源,包括数据库、日志文件、传感器、社交媒体等。数据质量对于数据挖掘的成功至关重要,因此需要确保数据准确、https://baijiahao.baidu.com/s?id=1778188984693097774&wfr=spider&for=pc
3.数据挖掘的步骤包括什么数据挖掘是一个通过特定算法对大量数据进行处理和分析,以发现数据中的模式、趋势或关联性的过程。下面详细介绍数据挖掘的步骤包括什么? 1、数据收集 首先,需要收集与待挖掘主题相关的数据。可能涉及从各种来源(如数据库、文件、网络等)获取数据,并将其清洗、整合到一个统一的格式中。 https://www.pxwy.cn/news-id-81213.html
4.CRISP该博客详细介绍了数据挖掘的标准流程——CRISP-DM模型,包括业务理解、数据理解、数据准备、建模、评估和部署六个阶段,阐述了每个阶段的关键任务和目的。 摘要由CSDN通过智能技术生成 CRISP-DM (cross-industry standard process for data mining), 即为"跨行业数据挖掘过程标准". 此KDD过程模型于1999年欧盟机构联合起https://blog.csdn.net/tbkken/article/details/8186090
5.数据挖掘的六大过程数据挖掘的六大过程通常包括:数据清洗、数据集成、数据选择、数据变换、数据挖掘、模式评估。 这六个过程构成了一个系统而复杂的工作流程,旨在从大量数据中提取有用的模式和知识,支持决策和预测。 以下是每个过程的详细解释: 一、数据清洗 定义:数据清洗是对原始数据进行预处理的过程,旨在解决数据缺失、不一致、噪声等https://www.ai-indeed.com/encyclopedia/10656.html
6.数据挖掘的过程张杰整理数据挖掘是指一个完整的过程,该过程从大型数据库中挖掘先前未知的、有效的,可实用的信息,并使用这些信息做出决策或丰富知识。下图描述了数据挖掘的主要步骤和过程。 数据挖掘过程中各步骤的大体内容如下: 第一步:确定挖掘目的。认清数据挖掘的目的是数据挖掘的重要一步。挖掘的最后结果是不可预测的,但要探索的问题应https://maimai.cn/article/detail?fid=1405334297&efid=7lwV824VMzvaUfEhWMvd3A
7.什么是数据挖掘?——数据挖掘的过程,方法和实例——数据挖掘的过程,方法和实例 数据挖掘是指从大量的数据中发现有价值的模式、规律和知识,以支持决策和预测分析的过程。通过数据挖掘,我们可以从海量数据中发现隐藏的关联性和趋势,为企业和组织提供宝贵的商业洞察力。下面将介绍数据挖掘的过程、方法和实例。https://www.jiandaoyun.com/fe/sjwjsjwjdg/
8.数据挖掘研究(精选十篇)数据挖掘是指从数据集合中自动抽取隐藏在数据中的那些有用信息的非平凡过程, 这些信息的表现形式为:规则、概念、规律及模式等。它可帮助决策者分析历史数据及当前数据, 并从中发现隐藏的关系和模式, 进而预测未来可能发生的行为。数据挖掘的过程也叫知识发现的过程。 https://www.360wenmi.com/f/cnkey7ouwjk5.html
9.终于有人把数据挖掘讲明白了图1 数据挖掘过程 2数据挖掘的内容 2.1 关联规则挖掘 从大规模数据中挖掘对象之间的隐含关系称为关联分析(Associate Analysis)或者关联规则挖掘(Associate Rule Mining),它可以揭示数据中隐藏的关联模式,帮助人们进行市场运作、决策支持等。 考察一些涉及许多物品的事务。事务1中出现了物品甲,事务2中出现了物品乙,事务3https://www.51cto.com/article/698009.html
10.数据挖掘论文范文8篇(全文)根据上面的研究, 我们证明了, 在数据挖掘的过程中, 应用机器学习算法具有举足轻重的作用。作为一门多领域互相交叉的知识学科, 它能够帮助我们提升定位的精准度以及定位速度, 可以被广泛的应用于各行各业。所以, 对于机器学习算法, 相关人员要加以重视, 不断的进行改良以及改善, 切实的发挥其有利的方面, 将其广泛https://www.99xueshu.com/w/filedo12vrm4.html
11.《数据挖掘技术》试读:第三章数据挖掘过程数据挖掘过程 第1章将数据挖掘的良性循环描述为一个业务流程,其中把数据挖掘划分为4个阶段: (1) 识别问题 (2) 将数据转换为信息 (3) 采取行动 (4) 度量结果 本章的重点转向把数据挖掘作为技术过程,把识别业务问题转变为将业务问题转化为数据挖掘问题。同时,第二个阶段——把数据转换为信息,将扩展到几个主题https://book.douban.com/reading/27167261/
12.什么是数据挖掘和KDD·MachineLearningMastery博客文章翻译我在进入该领域的早期就读过这本书,这个数据挖掘的定义及其与机器学习的关系一直困扰着我。当我应用机器学习方法时,我应用一个看起来像数据挖掘过程的过程,除了我不是试图发现模式本身,而是我试图为一个定义良好的问题找到一个“足够好”的解决方案。 数据挖掘:概念和技术 https://www.kancloud.cn/apachecn/ml-mastery-zh/1951996
13.基于MapReduce的增量数据挖掘研究AET摘要: 频繁项集挖掘是数据挖掘过程中的重要部分,传统数据挖掘算法中常用Apriori算法和FP增长算法来挖掘频繁项集。在实际应用中,传统算法往往不能用于频繁更新的数据库,采用IMBT数据结构能从不断更新的数据库中挖掘频繁项集,但是这将导致存储空间不足和运行效率低下的问题。基于MapReduce的增量数据挖掘能够有效解决这些http://www.chinaaet.com/article/218164
14.数据挖掘:实用案例分析完整pdf扫描版[103MB]电子书下载第3章 数据挖掘建模 3.1 数据挖掘的过程 3.2 数据挖掘建模过程 3.2.1 定义挖掘目标 3.2.2 数据取样 3.2.3 数据探索 3.2.4 预处理 3.2.5 模式发现 3.2.6 模型构建 3.2.7 模型评价 3.3 常用的建模工具 3.4 本章小结 第4章 顶尖数据挖掘平台TipDM https://www.jb51.net/books/629234.html
15.数据仓库与数据挖掘技术—数据挖掘分类及过程模型数据挖掘:首先根据对问题的定义明确挖掘的任务或目的,如分类、聚类、关联规则发现或序列模式发现等。然后选择算法 结果解释与评估:对发现的模式进行可视化,或者把结果转换为用户容易理解的其他表示形式 Fayyad过程模型从某种意义上来说是面向理论,偏向技术的模型,而不是面向工程、面向应用的模型。虽然有模型的评估,但侧重https://www.jianshu.com/p/da25173289b9
16.保姆式GEO数据挖掘演示写在前面 模拟1000行代码不如实操训练,重现文章中的数据才是学习GEO数据挖掘的最好途径,基于以上精神,我们就来重现一下高分文章的数据挖掘过程。 至于为什么选择这篇文章,是因为我还是个GEO数据挖掘的小白https://m.wang1314.com/doc/webapp/topic/20967139.html
17.一文搞懂!商业数据分析全流程在模型评价阶段,也需要回顾整个数据挖掘的过程,查找是否存在疏忽和遗漏之处。例如,是否有更好的特征可以使用,是否有更好的模型可以尝试,数据清理和准备的过程是否充分等。数据挖掘过程回顾可以帮助我们找到改进的机会,提升模型的性能。 ● 确定下一步的工作内容 https://www.niaogebiji.com/article-606353-1.html
18.数据挖掘的流程包含哪些步骤?数据挖掘是从大量数据中挖掘出有用的信息和模式的过程。它涉及多个步骤,从数据收集到模型评估。以下是数据挖掘的常见流程步骤: 理解业务目标:在进行数据挖掘之前,需要明确业务目标和问题。确定要解决的问题以及所需的结果有助于指导整个流程。 数据收集:在这一阶段,需要收集与业务目标相关的数据。数据可以来自各种来源,https://www.cda.cn/view/202981.html
19.数据分析报告范文(精选10篇)⑤假设数据模型。 ⑥ 实际数据挖掘工作(data mining)。 ⑦ 测试和验证挖掘结果(testing and verfication)。 ⑧ 解释和应用(interpretation and use)。 由上述步骤可看出,数据挖掘牵涉了大量的准备工作与规划工作,事实上许多专家都认为整套数据挖掘的过程中,有80%的时间和精力是花费在数据预处理阶段,其中包括数据的净化https://m.wenshubang.com/baogao/155767.html