好未来:基于多模态数据分析的在线学习智能评估反馈

在线学习教学质量参差不齐,线下教学中一些老师由于缺乏在线授课经验,导致学生缺乏充分的在线形式的交互,学习单调枯燥。同时,整个在线课堂都被记录和复制,参差不齐的在线内容和教学质量,在传播广、覆盖面大、无地域限制的互联网环境中,一旦出现问题,会被无限放大,带来重大负面影响。好未来集团提出一套合理的在线课堂智能质量评估反馈体系。

该评估体系基于真实的多模态在线课堂数据,覆盖不同的在线教学形态,能够从老师视角和学生视角,全面衡量和考虑质量评估核心要素,进而实现在线教学的精准评估反馈。围绕当前中国K12在线课堂教学评价的现状、智能评估反馈的基本框架原理和关键技术等问题展开分析,阐述多模态数据分析技术在在线教学评价中的应用,探索未来的更多可能。

关于技术方案的具体措施

图1在线课堂教学评估反馈系统理论框架

在线学习智能评估反馈关键技术,其中包括在线课堂多模态的音视频数据的流转,以及人工智能算法的精准检测与分析。

图2多模态在线课堂数据处理和人工智能算法部署通用框架

关于应用效果

针对1对1在线学习制定了六个层面的质量评估标准。一是愿表达,在问答方面学生上课能够积极、完整地回答老师的问题;二是愿表达,在讲题方面学生能够完整讲述一道题的思路;三是勤动笔,在笔记方面学生上课要进行笔记的记录;四是勤动笔,在做题方面学生上课要完整的书写一道题的过程或结果;五是善总结,在归因过程中当发现错误时,学生要主动归纳错误的原因;六是善总结,利用导图在下课前学生要通过思维导图总结本节课的重点。

好未来集团已经将上述的基于多模态数据分析的在线学习智能评估反馈解决方案全面开发给全社会。在未来,智能评估反馈技术会逐步向学习者服务转化与过渡,逐步优化合适的教学服务。如何为学生提供全学习流程高质量的服务,是下一代教学产品和人工智能技术要解决的核心问题。(案例报送单位来自北京世纪好未来教育科技有限公司,上文为部分节选,如需全文请联系项目组。)

THE END
1.人工智能原理实验四:智能算法与机器学习本实验课程是计算机、智能、物联网等专业学生的一门专业课程,通过实验,帮助学生更好地掌握人工智能相关概念、技术、原理、应用等;通过实验提高学生编写实验报告、总结实验结果的能力;使学生对智能程序、智能算法等有比较深入的认识。要掌握的知识点如下: 掌握人工智能中涉及的相关概念、算法; https://blog.csdn.net/m0_64146991/article/details/144395968
2.赛桨PaddleSciencev1.0正式版发布,飞桨科学计算能力全面升级!百度飞桨作为拥有国内最大开源用户群体的深度学习平台,一直致力于将 AI 方法应用于基础科研,通过不断提升飞桨框架对科学问题的求解机制,并建设端到端的科学计算工具组件来加速 AI 与传统科学研究的融合。在过去的一年中,飞桨框架通过全量支持开源科学计算工具 DeepXDE 以及对大量科学领域论文代码的重构,进一步完善了https://baijiahao.baidu.com/s?id=1771997232125044980&wfr=spider&for=pc
3.基于在线字典学习算法的地震数据去噪研究与应用基于在线字典学习算法的地震数据去噪研究与应用 王量 开通知网号 【摘要】: 在地震数据处理领域,地震资料的去噪质量直接影响到后续处理工作的有效性和可靠性,并且随着地震勘探的发展越来越偏向于复杂油气藏,干净的地震资料难以获得,因此对于地震资料的去噪应用是地震数据处理领域中一项重要的持续研究内容。基于地震数据与https://cdmd.cnki.com.cn/Article/CDMD-10616-1019216086.htm
4.等生成模型的深度学习算法综合研究与应用大三及以上组菁英科研项目:人工智能与数据科学专题:基于LSTM等序列模型、GAN等生成模型的深度学习算法综合研究与应用【大三及以上组】https://www.eol.cn/waiyu/news/20230103103205.html
5.图机器学习峰会复杂图的研究与应用探索2022 年 6 月 23 日 图与推荐 背景介绍 6月 25 日,9:00 - 13:30,在 DataFunSummit 2022:图机器学习在线峰会上,由京东 纪厚业博士 出品的 复杂图论坛 ,将邀请来自亚马逊云科技、北京交通大学、UIUC、美团、天津大学、中国科学技术大学的6位专家学者,针对复杂图的发展趋势和应用实践进行深度分享,欢迎大家一https://www.zhuanzhi.ai/document/7219bfaf72699d982df8786ad4fbe2a3
6.人工智能深度学习算法优化与数据增强技术在图像识别领域的协同应用案例 以物体识别为例,通过采用深度学习算法优化和数据增强技术相结合的方法,可以显著提高模型在复杂场景下的识别准确率,例如在交通场景下的车辆识别、人脸识别等方面取得了良好的效果。 结语 通过以上介绍,我们了解了人工智能深度学习算法优化与数据增强技术在图像识别领域的协同应用研究。这种技术的发展将极大地提高图https://www.jianshu.com/p/2de25c9c4d0d
7.TCCT通讯Newsletter2017No.01快速在线模型预测及在三自由度直升机中的应用 系统科学与数学, 2016 Vol. 36 (10): 1618-1629 Abstract | PDF 李旭军,刘业政,荆科,何军 节点的时间异质性对信息传播的影响 系统科学与数学, 2016 Vol. 36 (10): 1630-1642 Abstract | PDF 刘秀丽,邹庆荣 我国用水总量预测研究 系统科学与数学, 2016 Volhttps://tcct.amss.ac.cn/newsletter/2017/201701/journal.html
8.科学网—[转载]强化学习在资源优化领域的应用当业务环境发生变化时,智能体能够及时地利用数据中蕴含的变化信号,从而更加迅速和敏锐地通过与业务环境的交互重新找到合适的优化方案。鉴于这些特点,近年来强化学习算法结合行业大数据的解决方案在资源优化领域得到越来越多的应用,并取得了一系列优秀的成果。 基于这种行业趋势,本文针对强化学习算法在资源优化领域的应用展开https://blog.sciencenet.cn/blog-3472670-1312677.html
9.2022年度陕西省重点研发计划项目申报指南目录2.高性能计算与工业软件 2.1 超大规模复数稠密矩阵方程直接求解算法库 2.2 超大规模复数稀疏矩阵方程直接求解算法库 2.3 工业仿真软件架构关键技术 2.4 三维几何建模技术研究 2.5 面网格生成技术 2.6 体网格生成技术 2.7 高性能三维图形渲染技术 2.8 航空大规模并行 CFD 计算技术及应用示范 http://www.kt180.com/html/sxs/9889.html
10.基于学习投入的混合式教学预警模型研究——以大学物理为例近年来,学习预警是教育数据挖掘研究和应用一个热点领域,国外学习预警的研究与实践始于 20 世纪 90 年代初,通过对国内文献的研究,发现国内最早研究学习预警的是华金秋,其《台湾高校学习预警制度及其借鉴》文献发表于 2007 年。学习预警普遍采用的算法有回归分析、并通过准率、召回率与 F 值等,本文使用了召回率、F 值https://www.thepaper.cn/newsDetail_forward_20481255
11.转:2024年展望:未来十大最吃香最具前景专业分析1.1 深度学习算法研究 神经网络架构优化:开发更高效、更强大的神经网络模型。 迁移学习:研究如何将一个领域的学习成果应用到另一个相关领域。 强化学习:探索AI如何通过与环境互动来学习最优策略。 联邦学习:研究如何在保护数据隐私的同时进行分布式机器学习。 https://maimai.cn/article/detail?fid=1851243312&efid=XSQx0hfK7u4CsISU06jfRw
12.智谱·AI人工智能发展月报(2021年1月)华盛顿大学和加州大学洛杉矶分校的研究人员与深度科技创业公司 Optelligence LLC 共同开发出一种光学卷积神经网络加速器,每秒能够处理拍字节(1 拍字节 = 250 字节)级的大量信息。这项创新利用了光的巨量并行性,预示着用于机器学习的光学信号处理新时代的到来,应用领域包括无人驾驶汽车、5G 网络、数据中心、生物医学诊断https://www.ofweek.com/ai/2021-01/ART-201717-8140-30484174_3.html
13.2022信息科技课程标准全文最新版(二) 信息隐私与安全 (三) 跨学科主题数字设备体验 第二学段(3?4年级) (-)在线学习与生活 (二) 数据与编码 (三) 跨学科主题 数据编码探秘 第三学段(5?6年级) (一)身边的算法 (―)过程与控制 (三)跨学科主题 小型系统模拟 第四学段(7?9年级) (一) 互联网应用与创新 (二) 物联网实践与探https://www.liuxue86.com/a/4254721.html
14.[量化]万字综述,94篇论文分析股市预测的深度学习技术一些实验探索了RNN与其他机器学习的混合应用。[108]提出了一种新颖且稳健的混合预测模型(HPM),它是三种预测模型的组合:RNN、指数平滑(ES)[11]和自回归移动平均模型(ARMA)[7]。遗传算法通过提供显著提高预测精度的最优权重来优化模型。[155]提出了基于RNN的状态频率记忆(StateFrequencyMemory,SFM)算法,该算法能够从http://www.360doc.com/content/23/0519/03/1081259395_1081259395.shtml
15.打破常规!R与机器学习在医学领域中针对测序数据的分析和可视化机器学习模型在生物医学应用中具有巨大的潜力。一个名为GradioHub的新平台为临床医生和生物医学研究人员提供了一种交互式和直观的方式来试用模型,并在真实世界的训练外数据上测试其可靠性。机器学习(ML)研究人员越来越多地成为跨学科合作的一部分,他们与领域专家密切合作,以应对高影响力的临床和生物医学挑战。例如,已经https://www.360doc.cn/mip/1105263022.html