AWAC:使用离线数据集加速在线强化学习技术博客技术支持京天机器人官网

该方法通过从先前的数据集(专家演示,先前的实验数据或随机探索数据)进行离线训练,然后通过在线交互快速进行微调来学习复杂的行为

经过强化学习(RL)训练的机器人有潜力用于各种挑战性的现实世界中的问题。要将RL应用于新问题,通常需要设置环境,定义奖励功能,并通过允许机器人从头开始探索新环境来训练机器人解决任务。尽管这最终可能行得通,但是这些“在线”RL方法非常耗费数据,并且针对每个新问题重复执行这种数据效率低下的过程,因此很难将在线RL应用于现实世界中的机器人技术问题。如果我们能够在多个问题或实验之间重用数据,而不是每次都从头开始重复数据收集和学习过程。这样,我们可以大大减少遇到的每个新问题的数据收集负担。

图1:使用离线数据集加速在线RL的问题。在(1)中,机器人完全从离线数据集中学习策略。在(2)中,机器人可以与世界互动并收集策略样本,以改进策略,使其超出脱机学习的范围。

我们使用标准基准HalfCheetah移动任务来分析从离线数据学习和后续的微调问题中的挑战。以下实验是使用先前的数据集进行的,该数据集包含来自专家策略的15个演示和从这些演示的行为克隆中采样的100个次优轨迹。

图2:与非策略方法相比,基于策略的方法学习起来较慢,这是因为非策略方法能够“缝合”良好的轨迹,如左图所示右:在实践中,我们看到在线改进缓慢使用策略上的方法。

1.数据效率

利用诸如RL演示之类的先前数据的一种简单方法是,通过模仿学习对策略进行预训练,并通过基于策略的RL算法(例如AWR或DAPG)进行微调。这有两个缺点。首先,先验数据可能不是最佳的,因此模仿学习可能无效。第二,基于策略的微调是数据效率低下的,因为它不会在RL阶段重用先前的数据。对于现实世界的机器人技术而言,数据效率至关重要。考虑右边的机器人,尝试以先前的轨迹达到目标状态T1和T2。策略上的方法不能有效地使用此数据,但是可以有效地“缝合”进行动态编程的策略外算法T1和T2以及使用价值函数或模型。在图2的学习曲线中可以看到这种效果,其中按策略使用的方法要比按策略使用的参与者批评方法慢一个数量级。

图3:使用离线策略RL进行离线培训时,引导错误是一个问题。左:该策略利用了远离数据的错误Q值,从而导致Q函数的更新不佳。中:因此,机器人可能会执行超出分配范围的动作。正确:引导错误在使用SAC及其变体时会导致不良的离线预训练。

原则上,该方法可以通过贝尔曼自估计未来回报的价值估计V(s)或行动价值估计Q(s,a),从非政策性数据中高效学习。但是,当将标准的非策略参与者批评方法应用于我们的问题(我们使用SAC)时,它们的性能较差,如图3所示:尽管重放缓冲区中已有数据集,但这些算法并未从脱机中显着受益训练(通过比较图3中的SAC(从头开始)和SACfD(在先)行可以看出)。此外,即使策略已通过行为克隆进行了预训练(“SACfD(预训练)”),我们仍然会观察到性能最初出现下降。

此挑战可归因于策略外引导错误累积。在训练期间,Q估计值将不会完全准确,尤其是在推断数据中不存在的动作时。策略更新利用了高估的Q值,使估计的Q值更糟。该问题如图所示:错误的Q值导致对目标Q值的错误更新,这可能导致机器人采取较差的措施。

3.非平稳行为模型

诸如BCQ,BEAR和BRAC之类的现有脱机RL算法建议通过防止策略偏离数据太远来解决引导问题。关键思想是通过将策略π限制为接近“行为策略”πβ来防止引导错误,即重播缓冲区中存在的动作。下图说明了这个想法:通过从πβ采样动作,可以避免利用远离数据分布的错误Q值。

但是,πβ通常是未知的,尤其是对于脱机数据,必须从数据本身进行估计。许多离线RL算法(BEAR,BCQ,ABM)明确地将参数模型拟合到来自重播缓冲区的πβ分布的样本。在形成估计值后,现有方法以各种方式实施策略约束,包括对策略更新的惩罚(BEAR,BRAC)或针对策略训练的采样动作的体系结构选择(BCQ,ABM)。

尽管具有约束的离线RL算法在离线状态下表现良好,但仍难以通过微调来改进,如图1中的第三幅图所示。我们看到,纯离线RL性能(图1中为“0K”)要好得多。比SAC。但是,通过在线微调的其他迭代,性能提高非常缓慢(从图1中的BEAR曲线的斜率可以看出)。是什么原因导致这种现象?

问题在于当在微调期间在线收集数据时,要建立一个准确的行为模型。在脱机设置中,行为模型仅需训练一次,但在在线设置中,必须在线更新行为模型以跟踪传入数据。在线(在“流”环境中)训练密度模型是一个具有挑战性的研究问题,在线和离线数据的混合导致了潜在的复杂多模式行为分布,这使难度变得更大。为了解决我们的问题,我们需要一种策略外的RL算法,该算法会约束该策略以防止脱机不稳定和错误累积,但并不过于保守,以至于由于行为建模不完善而无法进行在线微调。我们提议的算法(将在下一部分中讨论)通过采用隐式约束来实现。

图4:AWAC的示意图。高权重的过渡将以高权重回归,而低权重的过渡将以低权重回归。右:算法伪代码。

那么,这在解决我们较早提出的问题方面的实际效果如何?在我们的实验中,我们表明,我们可以从人类示范和非政策性数据中学习困难,高维,稀疏的奖励灵巧操纵问题。然后,我们使用随机控制器生成的次优先验数据评估我们的方法。本文还包括标准MuJoCo基准环境(HalfCheetah,Walker和Ant)的结果。

灵巧的操纵

图5.顶部:在线培训后显示的各种方法的性能(笔:200K步,门:300K步,重新安置:5M步)。下图:显示了具有稀疏奖励的敏捷操作任务的学习曲线。步骤0对应于离线预训练后开始在线训练。

我们的目标是研究代表现实世界机器人学习困难的任务,其中最重要的是离线学习和在线微调。其中一种设置是Rajeswaran等人在2017年提出的一套灵巧操作任务。这些任务涉及使用MuJoCo模拟器中的28自由度五指手进行复杂的操作技能:笔的手旋转,通过解锁手柄打开门,捡起球体并将其重新定位到目标位置。这些环境面临许多挑战:高维动作空间,具有许多间歇性接触的复杂操纵物理以及随机的手和物体位置。这些环境中的奖励功能是任务完成的二进制0-1奖励。Rajeswaran等。为每个任务提供25个人工演示,虽然这些演示不是完全最佳的,但确实可以解决任务。由于此数据集非常小,因此我们通过构造行为克隆策略,然后从该策略中进行采样,又生成了500条交互数据轨迹。

使用脱离策略的RL进行强化学习的优势在于,我们还可以合并次优数据,而不仅仅是演示。在本实验中,我们使用Sawyer机器人在模拟的桌面推动环境中进行评估。

为了研究从次优数据中学习的潜力,我们使用了由随机过程生成的500条轨迹的非政策数据集。任务是将对象推入40cmx20cm目标空间中的目标位置。

结果显示在右图中。我们看到,尽管许多方法以相同的初始性能开始,但是AWAC可以在线上最快地学习,并且实际上能够有效地使用离线数据集,这与某些完全无法学习的方法相反。

能够使用先前的数据并在新问题上快速进行微调,为研究开辟了许多新途径。我们对使用AWAC从RL中的单任务机制到多任务机制以及任务之间的数据共享和通用化感到非常兴奋。深度学习的优势在于其在开放世界环境中进行概括的能力,我们已经看到,它改变了计算机视觉和自然语言处理的领域。为了在机器人技术中实现相同类型的概括,我们将需要利用大量先验数据的RL算法。但是机器人技术的一个主要区别是,为一项任务收集高质量的数据非常困难-通常与解决任务本身一样困难。这与例如计算机视觉相反,在计算机视觉中,人可以标记数据。因此,主动数据收集(在线学习)将成为难题的重要组成部分。

这项工作还提出了许多算法方向。请注意,在这项工作中,我们专注于策略π和行为数据πβ之间的不匹配动作分布。在进行非政策学习时,两者之间的边际状态分布也不匹配。凭直觉,考虑两个解决方案A和B的问题,其中B是更高收益的解决方案,而非政策性数据则说明了提供的解决方案A。即使机器人在在线浏览过程中发现了解决方案B,非策略数据仍主要包含来自路径A的数据。因此,Q函数和策略更新是针对遍历路径A时遇到的状态进行计算的,即使它不会遇到这些状态执行最佳策略时。以前已经研究了这个问题。考虑到两种类型的分布不匹配,可能会导致采用更好的RL算法。

最后,我们已经在使用AWAC作为加快研究速度的工具。当我们着手解决任务时,我们通常不会尝试使用RL从头开始解决它。首先,我们可以遥控机器人以确认任务可以解决;那么我们可能会进行一些硬编码的策略或行为克隆实验,以查看简单的方法是否已经可以解决它。使用AWAC,我们可以保存这些实验中的所有数据,以及其他实验数据(例如超参数扫描RL算法时的数据),并将其用作RL的先前数据。

DonghuRobotLaboratory,2ndFloor,BaoguInnovationandEntrepreneurshipCenter,WuhanCity,HubeiProvince,ChinaTel:027-87522899,027-87522877

THE END
1.原创探索AI中的强化学习与深度强化学习原理及应用导读:随着人工智能技术的不断发展,强化学习和深度强化学习作为其重要分支,在许多领域都取得了显著的成果。本文将深入探讨强化学习和深度强化学习的原理及应用,帮助读者更好地理解这两种技 随着人工智能技术的不断发展,强化学习和深度强化学习作为其重要分支,在许多领域都取得了显著的成果。本文将深入探讨强化学习和深度强https://www.0753zz.com/html/biancheng/zx/2024-11-27/319487.html
2.Ai顶会创新点!GNN+强化学习,高性能,低成本!今天给大家推荐一个涨点发顶会的好方向:GNN+强化学习。这俩热点的结合可以轻松实现“1+1>2”的效果。GNN能够深入挖掘图中的模式和关系,而RL(强化学习)擅长在动态环境中进行序列决策,尤其是在需要长期规划和适…https://zhuanlan.zhihu.com/p/10461522860
3.强化学习算法详解:从理论到实践的完整指南强化学习算法详解:从理论到实践的完整指南 强化学习概述 强化学习是一种机器学习方法,旨在让智能体从与环境的交互中学习最佳行为策略,以最大化累积奖励。强化学习的核心思想是通过与https://www.jianshu.com/p/432bd53f17f8
4.ReinforcementLearning)和在线强化学习(OnlineReinforcementLearnin离线强化学习就像是通过看别人开车的录像学习一样,你使用预先准备好的数据(录像)来学习如何做出最佳决策。而在线强化学习则更像是亲自上路学车,你在真实环境中与环境互动,通过实际经验来改进你的决策和行为。 专业版本 离线强化学习(OfflineReinforcement Learning)和在线强化学习(Online Reinforcement Learning)是两种强化学https://blog.csdn.net/qq_40718185/article/details/139231769
5.离线强化学习为什么在线强化学习算法没有受到外推误差的影响呢?因为对于在线强化学习,即使训练是离线策略的,智能体依然有机会通过与环境交互及时采样到新的数据,从而修正这些误差。但是在离线强化学习中,智能体无法和环境交互。因此,一般来说,离线强化学习算法要想办法尽可能地限制外推误差的大小,从而得到较好的策略。https://hrl.boyuai.com/chapter/3/%E7%A6%BB%E7%BA%BF%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0/
6.科学网—[转载]强化学习在资源优化领域的应用强化学习在资源优化领域的应用王金予, 魏欣然, 石文磊, 张佳微软亚洲研究院,北京 100080 摘要:资源优化问题广泛存在于社会、经 ,科学网https://blog.sciencenet.cn/blog-3472670-1312677.html
7.强化学习离线模型离线模型和在线模型强化学习离线模型 离线模型和在线模型,在推荐算法领域,时常会出现模型离线评测效果好,比如AUC、准召等指标大涨,但上线后业务指标效果不佳,甚至下降的情况,比如线上CTR或CVR下跌。本文尝试列举一些常见的原因,为大家排查问题提供一点思路。1.离线、在线特征不一致离线https://blog.51cto.com/u_14499/11815202
8.基于安全强化学习的主动配电网有功无功协调优化调度基于安全强化学习的主动配电网有功-无功协调优化调度编者按光伏(photovoltaic,PV)在主动配电网(activedistributionnetwork,ADN)中比重的提升可能引发严重的电压越限问题。此外,由于配电线路阻抗大,有功、https://news.bjx.com.cn/html/20240402/1369428.shtml
9.AIR学术李升波:将强化学习用于自动驾驶:技术挑战与发展趋势或使用模型,或使用预先采集的数据,先离线训练一个最优策略,然后部署到自动驾驶汽车,实现在线控制应用。第二,同时训练和应用策略,即SOTI方法:这是利用强化学习的探索试错机制,通过在线探索环境产生数据,实现自动驾驶策略的在线自我更新。这类方法要求强化学习算法必须进行在线部署,从而进行在线地探索和在线地训练。https://air.tsinghua.edu.cn/info/1008/1323.htm
10.生成式AI与LangCHain(二)(3)离线方法通过直接利用人类反馈来绕过在线强化学习的复杂性。我们可以区分基于排名和基于语言的方法: 基于排名的:人类对语言模型输出进行排名,用于定义微调的优化目标,完全避免了强化学习。这包括 Preference Ranking Optimization (PRO; Song 等人,2023)和 Direct Preference Optimization (DPO; Rafailov 等人,2023)等方法。https://developer.aliyun.com/article/1511477
11.深度强化学习使用MATLAB 和 Simulink 将深度强化学习应用于控制和决策应用。https://ww2.mathworks.cn/solutions/deep-learning/deep-reinforcement-learning.html
12.ICLR上新强化学习扩散模型多模态语言模型,你想了解的前沿本周,全球最负盛名的人工智能盛会之一 ICLR 大会将在奥地利维也纳举办。所以,今天的“科研上新”将为大家带来多篇微软亚洲研究院在 ICLR 2024 上的精选论文解读,涉及领域涵盖深度强化学习、多模态语言模型、时间序列扩散模型、无监督学习等多个前沿主题。 https://www.msra.cn/zh-cn/news/features/new-arrival-in-research-11
13.基于深度强化学习的水面无人艇路径跟踪方法6.针对上述现有技术的不足,本发明所要解决的技术问题是:如何提供一种基于深度强化学习的水面无人艇路径跟踪方法,无需进行环境和无人艇运动建模并且具备自适应能力,从而能够进一步提高无人艇路径跟踪控制的稳定性和准确性。 7.为了解决上述技术问题,本发明采用了如下的技术方案: https://www.xjishu.com/zhuanli/54/202210772926.html/
14.大语言模型的拐杖——RLHF基于人类反馈的强化学习强化学习从人类反馈(RLHF)是一种先进的AI系统训练方法,它将强化学习与人类反馈相结合。它是一种通过将人类训练师的智慧和经验纳入模型训练过程中,创建更健壮的学习过程的方法。该技术涉及使用人类反馈创建奖励信号,然后通过强化学习来改善模型的行为。http://wehelpwin.com/article/4042
15.替代离线RL?Transformer进军决策领域,“序列建模”成关键Transformer 开始进军决策领域了,它能否替代离线强化学习呢?近日,UC 伯克利、FAIR 和谷歌大脑的研究者提出了一种通过序列建模进行强化学习的 Transformer 架构,并在 Atari、OpenAI Gym 等强化学习实验平台上媲美甚至超越 SOTA 离线 RL 基线方法。 自2016 年 AlphaGo 击败李世石开始,强化学习(Reinforcement Learning)在优化https://www.thepaper.cn/newsDetail_forward_13934432
16.动手学强化学习本书系统地介绍了强化学习的原理和实现,是一本理论扎实、落地性强的图书。本书包含3个部分:第一部分为强化学习基础,讲解强化学习的基础概念和表格型强化学习方法;第二部分为强化学习进阶,讨论深度强化学习的思维方式、深度价值函数和深度策略学习方法;第三部分为强化https://www.ptpress.cn/bookDetails?id=UB7d4a1fc362a4a
17.强化学习的10个现实应用通过强化学习,金融贸易不再像从前那样由分析师做出每一个决策,真正实现机器的自动决策。例如,IBM构建有一个强大的、面向金融交易的强化学习平台,该平台根据每一笔金融交易的损失或利润来调整奖励函数。 Reinforcement Learning in NLP (Natural Language Processing) https://www.flyai.com/article/750
18.「数字天空科技招聘」数字天空科技怎么样?数字天空科技 · 强化学习算法研究员 影响力129 访客993四川成都 个人简介 游戏行业研发,任职数字天空科技强化学习算法研究员职位,常驻四川;近期有993位访问者,在脉脉形成影响力129;在2020-6至今,任数字天空科技公司强化学习算法研究员职位;在2019-5至2020-6,任字节跳动公司iOS开发工程师职位;在2018-8至2018-10,.https://maimai.cn/brand/home/1ahq1EPmY
19.人工智能技术研究人工智能技术创新强化学习Reinforcement Learning 自动神经网络结构生成 自动离线强化学习 自动算法选择与动态调参 自动表示学习 样本高效强化学习 环境学习Environment Learning 知识驱动离散环境学习 知识驱动连续环境学习 数据驱动基于ML的环境学习 数据驱动基于因果的环境学习 AI基础架构 https://www.4paradigm.com/about/research.html