.TRS_EditorP{margin-top:14px;margin-bottom:14px;line-height:1.5;font-family:Arial;font-size:10.5pt;}.TRS_EditorDIV{margin-top:14px;margin-bottom:14px;line-height:1.5;font-family:Arial;font-size:10.5pt;}.TRS_EditorTD{margin-top:14px;margin-bottom:14px;line-height:1.5;font-family:Arial;font-size:10.5pt;}.TRS_EditorTH{margin-top:14px;margin-bottom:14px;line-height:1.5;font-family:Arial;font-size:10.5pt;}.TRS_EditorSPAN{margin-top:14px;margin-bottom:14px;line-height:1.5;font-family:Arial;font-size:10.5pt;}.TRS_EditorFONT{margin-top:14px;margin-bottom:14px;line-height:1.5;font-family:Arial;font-size:10.5pt;}.TRS_EditorUL{margin-top:14px;margin-bottom:14px;line-height:1.5;font-family:Arial;font-size:10.5pt;}.TRS_EditorLI{margin-top:14px;margin-bottom:14px;line-height:1.5;font-family:Arial;font-size:10.5pt;}.TRS_EditorA{margin-top:14px;margin-bottom:14px;line-height:1.5;font-family:Arial;font-size:10.5pt;}
一、引言
对于任何一个行业,即使在最困难的时期,一个企业能够拥有的最宝贵的“无形资产”就是数据。站在20万亿资产规模的背后,信托业在近年来的高速发展过程中,每家公司都积累了大量的业务数据。当我们想要透过“量”(数据规模)看到“质”(数据价值)的时候,会发现粗放发展过程中所沉淀下的数据并没有那么有价值。各类数据的准确性、完整性、可关联性、可分析性都远没有预期的那般可以利用。以至于我们有客户但是并不“认识”,我们有报表工具但是并不“相信”自动化的统计结果,数据之“大”变成数据之“困”、数据之“痛”。
如何去除这些困难和痛点,充分挖掘数据之间的关联性、建立跨系统耦合的数据分析模型,让数据真正服务于公司的业务发展,成为营销支持的有力推手呢下面就从认识数据入手,逐步发现实际生产经营过程中存在的各类数据问题,探讨可行的解决思路。
二、什么是数据、大数据和数据价值
什么是数据数据是指对客观事件进行记录并可以鉴别的符号,是对客观事物的性质、状态以及相互关系等进行记载的物理符号或这些物理符号的组合。它是可识别的、抽象的符号,其实通俗的说就是可查询的记录集。
数据如果只有量的概念,那就只会带来物理磁盘上空间的增加。如果无法从存量数据中发现价值,那这些数据保留的意义就只剩下对“历史记录”的备份。所以,大数据和数据之间远不止所差的一个“大”字,数据量是外在的表现,大数据的分析价值才是本质。麦肯锡的研究显示,金融业在大数据价值潜力指数中排名第一。银行、证券、保险以及P2P、众筹等新兴的互联网金融领域,正在利用大数据的价值分析进行一场全新的竞争。
三、数据在银行、证券、保险等金融同业的价值体现
如何挖掘数据潜在的价值使其“增值”,让数据转化为间接生产力,助力公司业务的发展呢让我们简单了解一下同为金融行业的银行、证券和保险业的情况。
(一)银行业
(二)证券业
(三)保险业
在保险行业,全球已经有2/3的保险企业正在计划进行大数据技术应用。通过大数据来进行精算、统计、建立保险模型,这给保险行业带来了新的竞争维度。波士顿咨询公司与中国保险业协会联合发布的研究报告《互联网+时代,大数据改良与改革中国保险业》对国内19家知名保险公司进行了访谈问卷,调研结果显示,63%的保险公司已将大数据应用于欺诈检测方面,47%的保险公司已在风险评估与定价方面展开实践,对于大数据在交叉销售、防止客户流失方面的实践分别都达到了32%。除此之外,保险公司还可以通过大数据技术细分客户进行精细化营销以及进行更准确的精算定价。
(四)其他金融业
除了上述几大金融行业,阿里巴巴通过其平台上大量用户产生的交易数据、好评率等完整的结构化数据可以非常容易的对用户进行信用评分和风险管理,阿里信贷系统甚至可以在1分钟内完成虚拟信用卡的审批和额度确定。如此高效的处理过程正是大数据分析有力支持的结果,也正是历史数据价值的充分体现。
由此可见,数据价值对于金融各子行业来说,已经成为其业务发展的重要决策参考和依据,在大数据里准确、快速的发现数据价值将是企业未来成长的基础和关键。
四、信托公司的“大”数据问题及影响分析
因金融各子行业的业务种类、发展阶段的不同,信托公司的“大”数据只是数量多、类型杂、分布广,还算不上真正意义的大数据,但从目前部分业务的发展趋势看看,某些业务也逐渐呈现出大数据趋势,比如现金管理类业务、消费金融类业务等。在我们的业务发展没有受限于真正的大数据问题之前,让我们先分析一下现有的“大”数据问题。
(一)基础数据获取阶段缺少制度化的质量控制要求
(二)数据标准差异性导致多业务系统成为信息孤岛
信托公司的各类应用系统往往来自于多个不同的供应商,每个供应商都有自己独立的数据标准和数据处理逻辑,当有较复杂的业务场景发生时需要多业务系统进行数据交互才能完成。由于数据标准的差异性,跨系统进行数据交互存在较大难度:1、直接跨系统读写存在较大的业务风险。2、采用接口的方式应对业务逻辑的多样性将会越来越困难。3、如果采用中间处理逻辑进行数据转换,则业务处理过程的实时性无法保证,业务操作过程体验较差。4、基于业务完整场景的数据统计存在一定困难,数据关联很难建立起来。随着业务种类和行业开放性的发展需求,继续在无规划和统一数据标准的状态下构建更多的业务系统只会让分散在不同应用系统中的业务数据成为信息孤岛。
(三)僵化的报表依赖无法满足灵活的数据处理工作要求
信托公司在日常工作中涉及诸多报表数据的统计工作,如:1104、EAST、全要素、理财资金、征信等。同时,为了满足公司日常经营管理的需要,也要对收入、费用、绩效考核等方面进行日常的数据统计分析。通常情况下,数据统计工作的一般处理方法是通过系统增加报表来实现。报表的优点在于,只要被统计的数据对象是完整的,报表的实现过程相对容易。报表的缺点在于,一旦报表开发完成并发布到系统中,面对数据统计维度及呈现方式的频繁变更要求,需要不断通过供应商变更系统。尤其当上述问题(二)普遍存在的情况下,跨系统建立数据统计过程存在实现的难度。目前监管机构的数据统计工作调整已是常态,信托公司普遍采用“报表+EXCEL手工”的方式应对,这种处理方式确实不能作为长期的对策。另外,在公司日常经营管理过程中,数据统计只有可以灵活的建立多角度的分析并呈现多样化的结果展示,才更有利于决策支持的需要。
五、“大”数据问题对策及大数据机会
基于上述的“大”数据问题,提出以下的建议对策。同时,对今后信托公司可以引入借鉴的大数据应用及可以基于自身发现的大数据机会进行了总结分析。
(一)从“源头”控制数据质量重塑数据价值
(二)提升数据整合加工处理能力,实现自有数据的价值增值
数据中心(数据仓库)是一个行业内较多公司都在探索的解决方案,理想的数据中心建成以后,一方面可以实现信托公司多系统数据的集中,另一方面可以满足灵活的统计结果输出,实现多维度、不同层面的数据统计,充分发现数据价值。构建数据中心可以分几个阶段来实现:一、数据采集:各类源数据的采集整合(以接口或中间表的方式将各应用系统的基础数据全部抽取到数据中心里);二、数据加工过程:建立数据加工模型,构建数据之间的关联性(在数据中心里增加数据处理过程,使存在业务关联性的不同应用系统间数据能够建立关联);三、数据输出:以常规数据统计工作为基础,实现灵活度更高的统计分析能力(数据经过二次加工以后,将以全新的逻辑关系入库,数据更具可分析性)。只有我们先“认识”了公司已有的全部数据,才能在数据的价值分析过程中发现增值点。
(三)完善应用体系架构,以新业务为突破点构建自主数据标准
(四)引入大数据分析方法,降低企业风险,提升工作效率
(五)发挥集团化金控平台各牌照间的数据协同,实现客户与公司利益双赢
六、结束语
从“大”数据到大数据,是从数据量到价值的转变。从大数据的价值分析到转化大数据成果,是从技术手段到应用思路的转变。数据之“大”带来了诸多问题的同时,更带来了发现更多业务的机会。借助大数据技术,建立全方位的客户管理视角、优化现有的产品设置、提升公司服务水平、实现精准营销策略、简化系统运行管理、完善风险管理机制,真正以数据说话,享受数据“服务”。