1、博弈理论的早期研究。一般认为,对于博弈理论的最早研究可以追溯到18世纪初。瓦德格拉夫(Waldegrave)在1713年提出了两人博弈的极小化极大混合策略解。古诺(Cournot)和伯特兰德(Bertrand)分别在1838年和1883年提出了博弈论最经典的模型,两位学者分别从产量决策和价格决策分析垄断的双寡头竞争模型,确定了在竞争之下各自的最优反映函数。这些都是关于博弈问题的早期的零星研究。
1944年,冯诺伊曼(VonNeumann)和奥摩根斯坦(Morgenstern)合著的《博弈论与经济行为》被认为是博弈理论初步形成的标志。该书在总结以往关于博弈的研究成果的基础上,提出了博弈论的概念术语、一般框架和表述方法,提出了较系统的博弈理论。而且,在该书以前,博弈论主要是数学家们研究的课题,主要是一种数学理论而不是经济学理论。《博弈论与经济行为》极大地促进了博弈论和经济学研究的联系。从此,博弈论开始被经济学家们所接受,对博弈论的发展起了巨大的推动作用。虽然《博弈论与经济行为》的出版标志着博弈论的初步形成,但是这个时候的博弈论还是比较幼稚的,研究的范围也较小,总体影响也很小。研究的主要对象是少数类型的合作博弈和零和博弈。
20世纪的40年代末到50年代初,是博弈论的发展史上一个重要阶段。越来越多的学者进行了博弈理论的研究。1950年,纳什(JohnNash)在他的博士论文《非合作博弈》中,将博弈论扩展到了非零和博弈,最终形成了非合作博弈理论的思想源泉,纳什均衡概念的提出以及纳什均衡存在性的纳什定理的证明,发展了以纳什均衡概念为核心的非合作博弈理论。纳什均衡是对古诺模型和伯特兰德模型中均衡概念的一般化,纳什均衡的概念是有关均衡概念的最基本的概念,后来的子博弈精炼纳什均衡,贝叶斯纳什均衡、精炼贝叶斯纳什均衡等概念的提出都是以纳什均衡为研究出发点的。
20世纪50年代中后期一直到70年代也是博弈论发展历史上较为重要的一个时期。“微分均衡”、“强均衡”、“重复博弈”以及在此基础上的完全信息动态博弈等概念就是在这一时期提出来的,而且在60年代初开始了博弈论在进化生物学中的应用的研究。这个时期产生的里程碑式的成果是海萨尼(Harsanyi)关于不完全信息博弈理论,他在1967-1968年的三篇关于不完全信息博弈理论的论文中,提出了关于不完全信息静态博弈的“贝叶斯纳什均衡”的概念,此外还在1973年提出了关于“混合策略”的不完全信息解释,以及关于不完全信息动态博弈的严格“纳什均衡”概念。同时这个时期也是进化博弈论发展的重要阶段,提出了“进化稳定策略”等概念。当然,这个时期产生的博弈论成果还有很多,博弈论更多地应用到经济学理论的研究当中,为80-90年代博弈论的成熟以及经济学理论的博弈论革命起了很大的推动作用。
20世纪80-90年代到现在是博弈论走向成熟的时期,期间产生了大量的研究成果和文献,表明博弈论已经作为一种一般的分析方法逐渐走进了政治学、军事学、生物学、统计学等多门学科中。尤其是在经济学中,博弈论占据了核心地位。这个时期,是对非合作博弈理论的进一步深化,产生了博弈论基础上的经济学分支,如信息经济学,以及一些关于特殊问题的理论,如拍卖理论、激励理论。早在1983年,因一般均衡理论而得到诺贝尔经济学奖的德布鲁(JDebreu)表明,如果没有博弈论中纳什均衡的重要概念,也就没有他对一般均衡的存在性的证明。到了90年代,克莱普斯(DKreps)、克鲁格曼(PKrugman)和格罗斯曼(SGrossman)都是因为在博弈论上的贡献而获得了美国的克拉克奖(ClarkPrize),这是美国对40岁以下经济学家的最高奖。之后,博弈论两度夺得诺贝尔经济学奖,1994年颁给纳什(Nash)、海萨尼(JohnHarsanyi)和塞尔顿(ReinhardSelten)三位博弈论专家;2005年颁给罗伯特奥曼(RobertJAumann)和托马斯谢林(ThomasCSchelling)。
二、博弈的类型及其均衡概念
博弈理论有合作博弈和非合作博弈之分。合作博弈强调团体理性,强调效率、公平和公正,非合作博弈更强调个体理性、个体的最优决策。按照参与人行动的先后顺序,博弈可以分为静态博弈和动态博弈。完全信息博弈是指每个参与者对所有其他参与者的特征、策略空间和支付函数有准确的知识;否则,就是不完全信息博弈。下图是基于上述分类方法的博弈类型以及各自的均衡概念。
三、博弈论的研究趋势及未来
1、合作博弈和非合作博弈之分。博弈论有合作博弈和非合作博弈之分,现在的研究更多地是基于非合作博弈的研究,事实上合作博弈也是博弈理论的重要内容。当前合作博弈理论研究的落后,正说明这个领域有很大的发展潜力,基于这方面的研究可能会带来博弈理论以及经济学理论的重大革命。
博弈论又称为“对策论”,一种使用严谨数学模型来解决现实世界中的利害冲突的理论。由于冲突、合作、竞争等行为是现实世界中常见的现象,因此很多领域都能应用博弈论,例如军事领域、经济领域、政治外交,解决诸如战术攻防、国际纠纷、定价定产、兼并收购、投标拍卖甚至动物进化等问题。
博弈论的研究开始于本世纪,1944年诺依曼和摩根斯坦合著的《博弈论和经济行为》一书的出版标志着博弈理论的初步形成,随后发展壮大为一门综合学科。1994年三位长期致力于博弈论研究实践的学者纳什、海萨尼、塞尔顿共同获得诺贝尔经济学奖,使博弈论在经济领域中的地位和作用得到权威性的肯定。
2.博弈论的基本原理和方法
文献[1][2]用浅白的语言叙述了博弈论的思想精髓和基本概念。文献[3][4]更注重理论上的分析和数学的严谨。概括起来,博弈论模型可以用五个方面来描述
G={P,A,S,I,U}
P:为局中人,博弈的参与者,也称为“博弈方”,局中人是能够独立决策,独立承担责任的个人或组织,局中人以最终实现自身利益最大化为目标。
A:为各局中人的所有可能的策略或行动的集合。根据该集合是否有限还是无限,可分为有限博弈和无限博弈,后者表现为连续对策,重复博弈和微分对策等。
S:博弈的进程,也是博弈进行的次序。局中人同时行动的一次性决策的博弈,成为静态博弈,如齐威王和田忌赛马;局中人行动有先后次序,称为动态博弈,如下棋。
I:博弈信息,能够影响最后博弈结局的所有局中人的情报,如效用函数,响应函数,策略空间等。打仗强调“知己知彼,百战不殆”,可见信息在博弈中占重要的地位,博弈的赢得很大程度依赖于信息的准确度与多寡。得益信息是博弈中的重要信息,如果博弈各方对各种局势下所有局中人的得益状况完全清楚,称之为完全信息博弈(gamewithcompleteinformation),例如齐威王和田忌赛马,各种马的组合对阵的结果双方都不严而喻。反之为不完全信息博弈(gamewithincompleteinformation),例如投标拍卖,博弈各方均不清楚对方的估价。在动态博弈中还有一类信息:轮到行动的博弈方是否完全了解此前对方的行动。如果完全了解则称之为“具有完美信息”的博弈(gamewithperfectinformation),例如下棋,双方都清楚对方下过的着数。反之称为“不完美信息的动态博弈”(gamewithimperfectinformation)。由于信息不完美,博弈的结果只能是概率期望,而不能象完美信息博弈那样有确定的结果。
U:为局中人获得利益,也是博弈各方追求的最终目标。根据各方得益的不同情况,分为零和博弈和变和博弈。零和博弈中各方利益之间是完全对立的。变和博弈有可能存在合作关系,争取双赢的局面。
还有另一类型博弈称为多人合作博弈,例如安理会投票表决,OPEC联合限产保价等问题。这类问题重点放在联盟利益的分配上,它的理论和方法广泛应用于利益损失的共同分担问题。多人合作博弈的研究方法主要是特征函数模型。以个可能的联盟为定义域,特征函数表示各个联盟的得益(N是局中人的数目),它的分配解必须符合一定的合理性和稳定性,它的解的概念也发展成多种多样,包括稳定集、核心、核仁、Shapely值等。解的多样性符合现实世界复杂多样的需要,针对不同的问题选择或创造合适的解的概念是博弈论深入研究的课题。
不管博弈各方是合作、竞争、威胁还是暂时让步,博弈论模型的求解目标就是使自身最终的利益最大化,这种解建立在对方也采取各自“最好策略”为前提,各方最终达到一个力量均衡,也就是说谁也无法通过偏离均衡点而获得更多的利益。这就是博弈论求解的本质思想。
3、博弈论与电力市场
博弈论是研究市场经济的重要工具。电力作为特殊的商品,它的生产、运输、销售和消费也逐渐走向市场化。世界范围内很多国家的电力工业走向放松管制、引进竞争的进程中,遇到很多前所未有的新课题,运用博弈论来分析解决其中一些问题是一个研究方向。用博弈论模拟电力市场,模拟的结果可能更加接近实际,为市场模式设计提供依据。另外,电厂或用电用户作为市场的参与者,可以用博弈论来分析市场,研究如何报价获利最大。
正确运用博弈论关键要针对电力市场的特点正确选择模型和解的概念。例如:力量相当的两个区域电网之间交换功率的情形比较适合用古诺模型和Nash谈判解方法;而自备电厂与公用电网之间的交易可能更适合用Stackleberg模型。还有局中人结盟问题:如何识别合作伙伴,结盟利益如何在联盟内分配。电力市场环境下,电网输电作为一项服务,它的网损、固定资产投资如何在网络使用者之间分担。这些分配问题有不同的概念的解:稳定集,核心,核仁,Shapely值等,如何合理选择或创造最接近实际的解的概念也是面临的课题。
博弈的结果是依赖于拥有的信息,采用什么样的信息披露政策是设计电力市场模式的一个方面。例如:电厂竞价上网,一个成功的报价不仅取决于自己的实力,还有赖于他人如何报价。但是各方往往不清楚互相之间成本、报价等信息,因为这些信息都是各自的商业秘密。如何处理这种信息既不完全也不完美的博弈是一个重要的课题。反过来,博弈的实验结果也为电力市场披露怎样的信息提供依据。
博弈论和电力市场理论都是很年轻的科学,两者都有广阔的发展天地,两者的结合可以互相促进。
4、博弈论在电力市场中的应用
4.1自备电厂与公用电网之间的交易
开放发电市场的进程中,拥有自备电厂的用户是一类特殊的市场参与者,它既是用电用户,也可以是电力的供应者。随着电力市场深入发展和工业的进步,自备电厂将成长为一支生力军。
文献[5]用博弈论来分析评价在分时定价的环境下拥有自备电厂的用户(NCP)对定价的影响作用。NCP既可以从公用电网购电,也可以自己发电来满足自身需求。为解决两者的冲突,作者提出了三种博弈模型:非合作Nash博弈模型,合作博弈模型和超博弈模型。作者构造了三个局中人:公用电网,普通用户,带自备电厂的用户(NCP),并且假设它们的需求函数、边际成本、收益函数等均是线性的,通过数字模拟得出了一些有趣的结果:①NCP的加入促使公用电网降低出售给NCP的电价;②冲突还使普通用户得到更多益处。该文为解决自备电厂与公用电网的相互作用提供了很有用的分析思想。但是尚有三点可以进一步改进:①该文尚未考虑NCP将自己多余的自发电卖给公用电网的情况;②该文将公用电网和NCP置于平等的市场地位可能不符合实际市场,如果公用电网规模很大,NCP数目很多但规模小,考虑Stackerlberg模型更符合两者实际;③该文假设公用电网的目标函数是整个社会利益最大化,而并非是自身利益最大化,这个假设不符合电力市场需要解除管制的发展方向。
文献[6]部分解决了以上问题,它重点放在自备电厂和公用电网相互作用的方式的选择:公用电网回购NCP多余电力(buy-backsystem)或者公用电网收取NCP运转电力的过网费(wheelingcharges)。该文分析了在不同市场环境下,各方的得益情况,得出了一些可能只有用博弈论才能得出的结论。
4.2区域间输电交易分析
互联网间短期电力交换是一种经济运行的手段。白晓民等在文献[7]中应用Nash博弈论来分析简单的两区域系统单时段交易分析,得出双方都可接受的交换功率和交易价格。在此基础上,文献[8]提出了一种两阶段迭代计算方法来处理外部交易计划与内部经济调度的协调。该文所用的博弈模型是二人非零和对策,采取合作型对策,应用Nash谈判公理作为仲裁程序,决策出双方都可接受的交换功率和交易价格。应该指出,白晓民等的分析是基于完全信息的博弈也即博弈双方均对对方在各种情况下的得益了解非常清楚。如果缺少这方面的信息,又应该如何分析处理呢?这个问题值得进一步深入探究。
4.3转运市场中电网的固定成本分摊问题
运转市场中一个难题是网络输电服务定价,这个定价能够给网络使用者一个信号,以达到全网最优化;并且能够补偿网络的投资者,网损、变动成本、固定成本等费用在网络使用者中合理分摊;同时能够正确激励网络增容。节点实时价格(nodalspotprice)制度可以解决网损和网络阻塞问题。但是文献[9]的作者认为节点实时价格制度不能完全回收输电系统的固定投资,为了解决双边贸易中输电系统固定成本公正分摊问题,作者提出了基于多人合作博弈模型,可以计算出逐条线路逐笔交易的分摊费用。文中使用“核仁”作为模型的解。该方法的优点:①使用“核仁”而不用Shapely值,因为“核仁”处于核心,分配值更加稳定和易于被各方接受;②提供了一种激励,减轻线路过载。
4.4基于Pool或PX模式的多边贸易市场
电力市场环境下的博弈具有行动策略随机性、信息隐蔽性,这些特点都给建模和计算造成困难,从而限制了实际应用。各种文献在处理这种不确定信息环境下的决策问题中,通常需要假设或者估计对方的信息,方法各有特色。
在文献[10]作者认为在完全竞争的市场环境下,市场参与者相对于市场规模都显得很小,市场影响力很小。在这种情况下,优化报价决策不需要博弈的思想。文中作者认为电力市场属于不完全竞争市场,单个市场参与者对市场是有影响力的,其模型本质上属于不完全信息的非合作博弈。例如:每个参与者只知道自己的成本信息,而不知道对方的成本等信息。在这种情况下作者提出了这样的一个问题:在无法完全了解对方的信息情况下,参与者如何投标(选择高价投标还是低价投标)才能使自己收益最大。该文通过转化的方式把不完全信息的博弈变为信息完全但不完美的动态博弈来求解。每个市场参与者均对自己的对手可能的出价进行分类,并对每一类的可能性进行概率估计,形成一个概率意义上的期望收益矩阵,用Nash平衡点的概念求解矩阵,得到问题的解。
文献[11][12]作者提出了一种谈判模型。每一个局中人进行决策时,都同时执行以下两个步骤:①对可能的合作对象按照一定的指标进行优先排序;②按照谈判优先顺序,逐一进行讨价还价,谈判的规则与程序是预先设定好的。该文的特色是谈判对象的优先顺序表的形成。排序的准则基于该局中人A对关于他人的信息的了解程度。先分别对其他局中人的成本信息进行分类,并对每一类出现的可能性进行概率估计。然后假设与某局中人B进行合作,互相交换共享所拥有的信息,联合成博弈的一方,剩下的局中人结合为博弈的另一方。这样的博弈模型的Nash平衡点是概率意义上的期望值,作为与B合作的优先指标。对每个局中人都进行一遍以上计算,得到了A的谈判对象优先顺序表。每个局中人都有自己的一张优先顺序表。最后按照预先设定的谈判规则与程序,各方同时进行合作谈判,谈判要解决如何合理分配或均衡比单干多出的利益。
该文关键的一点:正确掌握对方的成本、策略等信息。各方可能从每一次博弈的结果中得到有用的反馈信息,并用这种反馈来更新自己的知识库,提高对他人了认识。遗憾的是作者并没有提到如何实现这样重要的学习过程。该文的模拟算法中的一个缺点:计算量随局中人的数目和每个局中人类型的数目的增长呈指数增长。
4.5用博弈论解释和实现算法
文献[14]用博弈论来解释拉格朗日松弛法法解决机组经济组合的算法。该文认为在电力市场的环境下,竞争各方均以实现自身利益最大化为目标,旋转备用的约束变得软起来,PX(powerexchange)机构可能通过松弛这一约束进一步降低成本。该文提出了一种基于博弈论的算法获取最优的旋转备用。
作者认为拉格朗日松弛法的拉格朗日乘子是有经济含义的,松弛旋转备用的乘子被看作是提供备用的价格信息,各时段的旋转备用根据这个信息不断在规定的高低两种备用水平之间调整(例如:为t时段负荷)。根据优化原理,如果拉格朗日函数存在鞍点,则鞍点是原问题的最优解。
鞍点的概念与博弈论中的Nash平衡点有非常相似之处,如以上公式所示。基于此想法,作者构造了两厂商博弈模型。其中一局中人P代表整个实际电网的利益,它控制的决策变量是p,u(p向量表示各机组分配的有功,u向量表示机组启停),目标是使整个系统成本最低。另一个局中人Q,是一个假想的发电商,它以价格向P销售备用容量和有功容量。双方就旋转备用交易进行讨价还价,最终达到一个平衡的交易量和交易价格。作者证明以上博弈过程的Nash平衡解就是拉格朗日函数的解。基于以上结论,作者设计了自适应的次梯度算法寻求平衡点,其中一个关键技术作者设计了厂商P对厂商Q备用容量报价的反应函数该函数将映射到备用容量的两种水平之间(例如:5%Dt-%Dt,Dtt时段负荷),形成一个随价格信息变动的备用容量。根据厂商Q是否了解厂商P的反应函数,模型可细分为两种:Nash模型(不了解对方反应函数)和Stackelberg模型(Q了解P的反应函数),作者认为后一种模型掌握的信息较多,因此收敛的速度和优化的效果梢好于前一种模型。
用博弈论来解释并且设计一些算法是一个新鲜而具有挑战性的课题。博弈论本身就是带有优化功能的一门严谨的数学,不过它更具有人的逻辑思维的色彩,融合了一些用别的方法难以表达的信息。
一、抓住学生的共性
在讲授2005年诺贝尔经济学奖得主托马斯谢林(ThomasC.Schelling)的博弈承诺及其可信性概念时,笔者以制定《反国家分裂法》为典型案例进行分析。由于祖国统一问题是所有国人关心的国家大事,大学生也不例外,所以讲授过程非常顺利,以致学生在课后反馈中把这一案例列为讲授最成功的部分。接着,为了讲解如何应用可信承诺处理现实问题,笔者选择了电视连续剧《老大的幸福》第四集中的一个视频片段,进一步强化了知识点。实践证明,人物生动的形象在给课堂增添活跃气氛的同时,也很好地承载了传递知识的作用,以缩影的形式把可信承诺的概念和应用可信承诺策略的方法植入了学生的头脑中。最后,笔者以拆迁补偿合同签订中的一种可信承诺策略为例,对本节课进行了总结,并请学生加以点评。由于拆迁问题是当前社会的焦点问题,所以学生对点评表现出极大的兴趣。这样,通过抓住学生的认知共性,展示了可信承诺策略在焦点问题上能够将劣势变为优势的强大作用,成功地引导学生了解并掌握了博弈承诺及其可信性概念。
二、增强主题的典型性和知识模块的简洁性
以经典博弈问题为主题有利于组织素材、选择教学内容,简洁地安排知识模块、弱化知识的层次性有利于照顾各类学生在知识面、综合能力和认知水平上的差异,少而精地选择课程内容有利于突出重点,多角度地反复讲解有利于降低知识门槛,提高学习的效率。
例如:在主题选择上,笔者以多数学生熟知的“囚徒困境”作为第一主题,以试验性强、易于展开的“理性基础和有限理性”作为第二主题,以现实性突出的“重复动态博弈”作为第三主题。由于“囚徒困境”与经济学中的“理性人假设”密不可分,所以第一主题既能让学生感受到博弈问题的趣味性和深刻性,又能激发他们对该主题的进一步思考,使他们逐渐认识到“理性人假设”所具有的超越现实、过于理想的特性,从而部分地为第二和第三主题做好铺垫。另外,有大量关于“囚徒困境”和理性问题的课外资料易于获得,这为学生在课程初期进行兴趣驱动的导读创造了条件。
在知识模块设置上,笔者采取“自成模块、减少关联”的策略。例如:针对非常重要的“信息不对称”主题,我们选择以二手车市场为核心,构建包含药品市场、电脑市场和就业市场等典型主题的知识模块。一方面,这些市场为学生所熟知,易于接受,另一方面,这些市场中包含着非常典型的“信息不对称”因素,因而通过对市场现象的自然描述完全可以弱化学生对经济学市场知识的依赖。为了弱化知识的层次性,突出重点内容,笔者舍弃了理论体系中的某些知识模块,如“海萨尼转换”“斯宾塞信号传递模型”和“斯蒂格利茨信息甄别模型”。
三、重视案例应用,尤其应重视与诺贝尔经济学奖得主有关的案例
博弈论有一个显著特点,那就是它“声名显赫”,并且与诺贝尔经济学奖的关系密切。许多诺贝尔经济学奖得主都曾涉足博弈论领域,在博弈论的建立和发展中直接或间接作出过贡献。“名声在外”为博弈论的诡计公选课的开设提供了有利条件,也为课程的讲授提供了独特的视角和丰富的素材。
纳什是博弈理论发展的划时代人物,纳什均衡是博弈论的核心概念,两者都是公选课中必须包含的内容。为此,笔者设计以下三个环节:(1)借助“囚徒困境”和“情侣博弈”讲授纳什均衡及其不唯一性;(2)播放电影《美丽心灵》,并进行讨论和点评;(3)布置以纳什为主题的案例设计作业,让学生在课堂上演讲。
第一部分是讲解的重点,讲好纳什均衡意味养博弈论课程成功了一半。第二部分可以把人格培养和素质教育有效融合起来,《美丽心灵》不仅能让人体会到学生心灵中因爱而生的温暖,还能给出人生原本就是一场博弈的警示,体现出“大人物小故事”的精髓。纵然纳什这样的天才也有无法摆脱的困境,何况他人所以,在人生的博弈中,既要承认能力的差异,又要找寻属于自己的色彩。同时还应看到,纵然如纳什般为顽疾所缠都可以逐渐康复,何况其他挫折所以,要以积极、乐观、健康的心态对待人生,终身学习而不轻言放弃。第三部分是对学生的启发环节。该环节不仅要培养学生对本课程的兴趣,加深学生对知识的理解,还要通过为其提供上台演讲、展示成果的机会,锻炼他们的逻辑思维能力和表达能力。值得一提的是,很多学生在设计案例时自学了有名的“智猪博弈”和“恋爱博弈”等经典模型,巩固了纳什均衡概念,还有学生甚至对纳什曾经设计过的一种“六连棋”博弈游戏进行了分析。
四、重视学科交叉,尤其应重视学科交叉视阈下的学术前沿成果
博弈论己逐渐成为一门为诸多学科提供思维方法和分析技巧的学问,可以说,所有与生命有关的学科都蕴藏着博弈论的应用空间。在公选课中,应重视从学科交叉的视角供给知识,广泛培养各专业学生对课程的兴趣。例如:笔者选择生物演化理论和博弈论交叉所产生的演化博弈论作为知识模块,以人类社会的同性恋演化作为典型主题,挑选最前沿的学术研究案例作为教学的主要内容,为学生进行讲解,扩展了学生的知识面。
在演化博弈论的开创性著作《演化与博弈论》一书中,作者约翰梅纳德史密斯(JohnMavnardSmith)用精妙的语言、深入浅出的分析和丰富有趣的案例把博弈论的思想融入到生物演化中,推动了对“动物为什么如此”这一问题的深入研究,揭示了动物群体行为演变的动力学机制。笔者首先以“哺乳动物一雄多雌”案例作为引导,简单介绍演化博弈论在性选择和性别比问题上的研究视角以及逻辑结构,然后立刻引出了人类面临的一个有关性的问题――同性恋演化主题下的性问题:从进化论的角度来看,男男同性恋的存在完全没有任何意义,这是因为同性恋相比于异性恋而言成功繁殖后代的可能性太小,那么为什么同性恋的基因没有被淘汰显然,这一问题接近现实热点,对学生极具诱惑力,而且还具有很强的学术延伸性。为了讲解同性恋基因延续的演化博弈机制,笔者借助2010年2月24日美国心理科学杂志上发表的关于萨摩亚岛上男男同性恋的最新研究成果,利用最前沿的学术案例详细分析了“亲族选择”假说下的演化博弈机制。教学实践表明,通过这样的内容设计,来自不同专业学生的学习兴趣都被调动起来,加深了他们对博弈论的理解,顺利实现了教学的目标。
五、重视开放性,尤其应重视教学信息交流反馈的开放性
教学实践中,笔者让学生通过电子邮件的形式反馈“课堂心得”,并要求他们同答以下三个问题:(1)这次课对你影响最深或最成功的是哪部分(2)最失败或可有可无的又是哪部分(3)对本次课你有什么意见和建议
教学探索与实践的过程是循序渐进的过程,学生在这一过程中所起到的作用是巨大的。只要教师能够及时、充分地了解学生的需求,不断总结、深化课程教学改革的经验,就一定能取得更大的成效。
在缺少合适的教材这一问题上,笔者设想,可以采取灵活性较强的活页方式(如当前许多大学英语教材中都有活页内容)改变这一现状。活页方式既可以突出主题的典型性,又可以涵盖即时事件,满足学生的需要。同时,教材活页的积累还能为课程建设尤其是优质博弈论公选课教材的编著奠定基础。
只要教师能够了解学生的需求,选择恰当的教学方式、方法,不断加以分析、总结,进一步完善教学环节,激发学生的学习兴趣,就一定能顺应高等教育教学改革的趋势,在确保教学质量的基础上,逐渐把博弈论的诡计公选课建设好。
参考文献:
[1]顾建民.高等教育学[M].杭州:浙江人学出版社,2008.
[2]裘松良.转型期高校教育研究与实践[M].北京:高等教育出版社,2010.
[3]胡剑锋.高校经管类教育研究与实践[M].杭州:浙江人学出版社,2011.
[4]潘月明,郭秀芝.人学英语口语公选课教学模式设计与实践[J].高等教育学刊,2009(2).
[5]川浦徐进.本科博弈论教学过程中的案例运用[J].江南人学学报:教育科学版,2009(12).
[6]叶国荣,等.高校本科生教育中研究型教学模式探讨[J].中国高教研究,2009(3).
关键词:博弈论;田忌赛马;一般扩展式
一、什么是“博弈”
按照《现代汉语词典》的解释,“博”是丰富多彩的意思,而“弈”则指下棋、打牌等对抗性游戏,因而“博弈”就是指丰富多彩的对抗性游戏。①在英文中,“博弈”一词是“game”的复数,表示各种各样的游戏。因此,汉语中的“博弈”与英语中的“game”意思完全一致。“博弈”与“游戏”有这密不可分的联系。
学者王俊冰对“博弈”一词有着不同的理解。他指出:博弈的“博”字是竞争的意思,“弈”是对弈,是一种关于在竞争中选择策略,争取最好结果的技艺。②概括来讲,博弈是一种技艺。学者郭磊认为:博弈的基本意思是弈棋,博弈本身是一种游戏,但博弈更强调谋略……博弈则可能是一系列策略与行动的组合体,并且是一个由始而终并产生结果的完整过程。③可以理解为博弈是一个过程。还有学者认为:博弈即一些个人、队组或其他组织,面对一定的环境条件,在一定的规则下,同时或先后,一次或多次,从各自允许选择的行为或策略中进行选择并加以实施,各自取得相应结果的过程。④
二、“田忌赛马”概述
忌数与齐诸公子驰逐重射。孙子见其马足不甚相远,马有上、中、下辈。于是孙子谓田忌曰:“君弟重射,臣能令君胜。”田忌信然之,与王及诸公子逐射千金。及临质,孙子曰:“今以君之下驷彼上驷,取君上驷与彼中驷,取君中驷与彼下驷。”既驰三辈,而田忌一不胜而再胜,卒得王千金。于是忌进孙子于威王。威王问兵法,遂以为师。”⑤这是我国“田忌赛马”故事的原型。这个故事可谓是众所周知了,该故事发生在战国时期,齐威王和大将田忌赛马,根据马跑的速度双方各有上、中、下三种等级马各一匹,其中田忌的马比同一等级齐王的马跑得慢,但比齐王低一级的马跑得快。比赛规则为三局两胜制,每局比赛各出一匹马,负者向胜者支付黄金⑥一千,显然相比之下齐王的马占优势。在第一次比赛中,田忌以上等马对齐王的上等马,以中等马对齐王的中等马,以下等马对齐王的下等马,结果连负三局。在第二次比赛中,田忌采纳孙膑的建议,以下马对齐王的上马,以中马对齐王的下马,以上马对齐王的中马,结果胜两局负一局,赢齐王一千金,而自以为胜券在握的齐王反而输掉一千金。
首先要从语言上分析一下这个典故。“孙子见其马足不甚相远”这一句是前提,否则这个故事就不会发生。我们可以这样理解这句话,即“齐威王和田忌的马根据速度划分各有上、中、下三种等级各一匹,其中田忌的马比同一等级齐王的马跑得慢,但比齐王低一级的马跑得快”。假如齐威王的马按速度由快到慢分为A1、A2、A3,田忌的马由快到慢分为B1、B2、B3,那么这六匹马由快到慢依次是A1、B1、A2、B2、A3、B3。另外,还有一处是学者研究中普遍遗漏的,即“及临质”三个字,这一句起到了至关重要的作用。这句话在这个故事中应该翻译为“等到将要开始比赛的时候”,那么这句话告诉我们一个什么讯息呢?我认为是说孙膑献计田忌改变马的出场顺序这一情况并不为齐威王所知,这也成就了田忌在第二轮赛马中能够胜出的重要因素。“威王问兵法,遂以为师。”这一句也是关键所在,通过这一句话得知,齐威王并不知道自己是怎么输的,所以请教孙膑。假设如果齐威王知道其中玄机的话,那么田忌将必输无疑。以上三点是“田忌赛马”故事得以出现的基本前提。
三“田忌赛马”的博弈论分析
前文分析了该故事的三个前提,一、田忌的每等级的马均次于齐威王同等级的马,但强于齐威王下个等级的马;二、齐威王事先不知道田忌临阵改变了马的出场顺序;三、齐威王不知道改变马出场顺序其中的玄机。本文以下的分析均基于此三前提。
首先要从博弈论定义上理解“田忌赛马”。很明显,“田忌赛马”确实符合“博弈”的定义,但现在言“田忌赛马”就是博弈还为时尚早。
其次需要分析“田忌赛马”是否具备博弈理论的基本要素。国内学术界对博弈论基本构成要素有分歧,基本分为两派。一派认为博弈论要素有四方面,即博弈的参加者、策略、进行博弈的次序、博弈的信息。但是主张博弈理论四要素这一派内部也有分歧,学者胡静认为博弈理论的第四个构成要素是“博弈方的得益”,⑧而不是博弈的信息;另一派认为博弈理论具有五方面的要素,即博弈的参加者、策略、进行博弈的次序、博弈的信息、博弈方的得益。可以清晰地看出后者对博弈理论的要素有了一个完整的归纳。那么“田忌赛马”是否具备五个要素呢?齐威王和田忌是博弈的参加者;策略选择按照排列组合来计算共有六种(这里不详细叙述);博弈的次序是双方非同时决策,齐威王是先手;博弈的信息是不完全的,齐威王不知道田忌策略的变化;得益是每胜一局有一千金的奖励。通过分析这些要素,我们得出一个结论,即“田忌赛马”是一个完整的博弈。
“田忌赛马”这个典故是非合作博弈,也是零和博弈,这在上文中已经提到。同时,依据上文的三个前提,它同时也是一种不完全信息状态下的动态博弈。
四“田忌赛马”博弈的一般扩展式及其序列均衡
上文我们提到“田忌赛马”博弈是非完全信息动态博弈,而这种博弈则是博弈论中最为复杂的模型,也称动态贝叶斯博弈。序列均衡是非完全信息动态博弈的核心概念。
一个动态贝叶斯博弈的扩展式为=﹛N,H,P,I,p,u﹜,其中N为参与者集合,N=﹛0,1,2,…,n﹜,0代表自然。B11H为全历史集合,即从博弈开始到博弈结束所有可能的行动序列﹛a0,a1,…,am﹜,m为任一自然数,表示一个全历史包含的行动次数。P为参与者函数即对于每一个子历史h,P(h)将其映射成自然或是其他参与者。I为信息空间。p为自然的概率分布函数,其表示当自然行动时,自然以多大概率选择某个行动。u表示参与者的偏好,其定义是在全历史结果上的收益函数。B12
在“田忌赛马”这个非完全信息动态博弈中,还有一个很重要的因素需要我们注意,即参与者可能临时改变策略,这也更带来了决策的复杂性和不稳定性。因为一场赛马是由三局比赛构成的(非同时进行),假设第一局结束后,参与者肯定要根据这一局得结果变换策略,同时也能观察到一部分对方的策略,这么说来,双方获胜的概率就不是齐威王5/6,而田忌1/6的概率了,需要更复杂的计算。
客观而言,直到今天理论界也没有找到能适用所有非完全信息动态博弈的均衡概念,也缺乏一个普遍的方法来求解动态博弈的序列均衡。B13
结论
“田忌赛马”博弈不是人们想象中的那么简单的一个博弈,反而是博弈类型中最复杂的非完全信息动态博弈,应该对这个博弈有一个全新的认识。并且,在这个博弈中,至少包含着两个子博弈,这更加剧了此博弈的复杂性。博弈论思想虽然在实际生活中适用性差,但它教会我们一种思考问题的方法,对合理规避风险,获取最大收益还是有指导意义的。(作者单位:四川大学)
注解
①姚国庆:《博弈论》,北京:高等教育出版社,2007年,第1页。
②王俊冰:“白话博弈论”,《理论学习》,2006年第6期,第63页。
③郭磊:“博弈论简论”,《山东经济》,1999年第6期,第17页。
④胡静:“博弈论在数学中的应用”,《商情》,2006年第4期,第213页。
⑤《孙子吴起列传第五》,《史记》卷六十五,中华书局,2007年4月。
⑥“黄金”在古代是一种货币,不同于现代意义上的黄金;“黄金一千”只一千两黄金的意思。
⑦周翰光:“论孙膑的对策论和辩证法”,《齐鲁学刊》,1984年第3期,第36页。
⑧胡静:“博弈论在数学中的应用”,《商情》,2008年第5期,第213页。
⑨逯彦彦:“博弈论前瞻探讨”,《商丘职业技术学院学报》,2009年第1期,第33页。
⑩胡静:“博弈论在数学中的应用”,《商情》,2008年第5期,第213页。
11“自然”指在动态贝叶斯博弈中参与博弈,无收益,但可以决定不同历史发生概率的参与者。
博弈论正式创立于上世纪20年代,40年代引入经济学,随后风靡整个经济理论界,并随着“经济学帝国主义”。进入政治学、法学和社会学等学科。如今,博弈论不仅是当代社会科学的分析工具,更成为流行用语。博弈论的流行,并不意味着博弈论毫无瑕疵。博弈分析许诺其能够明晰理性人的最优行为。因此,我们看到了拥有堪称完美理论形态的“纳什均衡”(Nashequilibri。m:及其衍生物。倘若拥有“完美”的信息和“完美”理性。纳什均衡就是完美的。然而,日常生活中的博弈,通常不那么“完美”,不可能知道全部的信息;更重要的是,不可能那么“理性”。于是,就有了著名的“囚徒困境”,个人的最优策略产生了对所有参与者而言最糟糕的结果。
经典博弈论的视角,是以不偏不倚的旁观者姿态看待博弈双方的。这种超然的中立者态度,会使曾经旨在解决现实社会问题的博弈论陷入纯理论的自娱自乐中。
当博弈论专家的理论模型越来越超出常人的智力范围时,另一个自然科学领域开始注意到博弈论的潜在价值,这就是生物学。《演化与博弈论》这本现在看来完全能够称得上理论坐标的著作所讨论的内容,正是关于应用博弈论构建生物演化分析一般方法的总述。
本书对于社会科学专业人士――且不说那些非专业人士――来说,翻开的第一感觉可能会是一种莫名的疏离。鸟类翅膀形态的演化、雌性掘土蜂的竞争、哺乳动物的性选择,这些东西和我有什么关系
作为一个生物学家,梅纳德,史密斯被众多社会科学大师称为“演化博弈论之父”,这就如生物遗传基因突变一样奇妙。但是,如果细究其理论,便会发现生物演化的思想,事实上抓住了人类社会某些内在的本质。其中最重要的一点,便是生物学家放弃了经典博弈理论苛刻的理性要求。放弃了完全理性假设的演化博弈论,允许我们从自身视角出发去看待社会。这种“设身处地”的思考视角。使演化博弈论具有了经典博弈理论没有的亲和力。当生物学家将经典博弈理论的思想精髓应用于生物学研究20年后,经济学家又重新将结合了生物演化思想的博弈理论拿回来,用于分析社会制度的演化。