常用的数据分析方法常见问题

横向对比:横向对比就是跟自己比。最常见的数据指标就是需要跟目标值比,来回答我们有没有完成目标;跟我们上个月比,来回答我们环北增长了多少。

纵向对比:简单来说就是跟他人比。我们要跟竞争对手比,来回答我们在市场中的份额和地位是怎样的。

2、分组分析法

结合对比法,把总体中不同性质的对象分开,并进行对比以便了解内在的数据关系。

3、结构分析法

亦称比重分析,分析总体内各组成部分占总体的比例以及构成的变化,从中掌握事物的特点和变化趋势。

4、留存分析法

留存分析法是一种用来分析用户参与情况和活跃程度的分析模型,考察进行初始行为的用户中,有多少人会进行后续行为。从用户的角度来说,留存率越高就说明这个产品对用户的核心需求也把握的越好,转化成产品的活跃用户也会更多,最终能帮助公司。

5、交叉分析法

6、漏斗分析法

结合对比、分组分析法,可以比较同一环节优化前后效果、不同用户群转化率,同行类似产品的转化率。反映用户行为状态以及从起点到终点各阶段用户转化情况,常用转化率和流失率两个指标。

7、矩阵分析法

即矩阵关联分析法,以事物的两个重要属性为分析的依据,进行分类关联分析,为解决问题和资源分配提供参考依据。

8、象限分析法

依据数据的不同,将各个比较主体划分到4个象限中。如果把智商和情商进行划分,就可以划分为两个维度四个象限,每个人都有自己所属的象限。一般来说,智商保证一个人的下限,情商提升一个人的上限。

9、趋势分析法

当数据很多,而我们又想从数据中更快、更便捷来发现数据信息的时候,这个时候需要借助图形的力量,所谓图形的力量,就是借助EXCEl或者其他画图工具把他画出来。

趋势分析一般用于核心指标的长期跟踪,比如:点击率、GMV、活跃用户数。一般做成简单的数据趋势图,但光制作成数据趋势图还不算分析,必须像上面一样,数据有那些趋势上的变化,有没有周期性,有没有拐点,并分析背后的原因,无论是内部原因还是外部原因。趋势分析最好的产出是比值。有环比、同比、定基比。比如2017年4月份比3月份GDP增长了多少,这就是环比,环比体现了最近变化的趋势,但有季节性的影响。为了消除季节性的影响,推出了同比,比如:2017年4月份比2016年的4月份GDP增长了多少,这就是同比。定基比就更好理解,就是固定某个基点,比如将2017年1月份的数据作为基点,定基比则为2017年5月份的数据和2017年1月份的数据做对比。

10、指标分析法

在实际工作中,当拿到一些可视化数据图表或者是Excel表格时,我们可以直接运用统计学中的一些基础指标来做数据分析,比如平均数、众数、中位数、最大值、最小值等,下面我们分别来介绍:

平均数

平均数指标可用于对比同类现象在不同地区、不同行业、不同单位等之间的差异程度,比用总量指标对比更具说服力。除此以外,利用平均指标对比某些现象在不同历史时期的变化,也更能说明其发现趋势和规律。

众数、中位数

众数也就是数据中的一种代表数,它反应的是数据的一种集中程度。比如说最佳,最受欢迎,最满意都与众数有关。众数本质上来说,反映的是数据中发生频率最高的一些数据指标,在做数据分析时,我们可以对这些数据指标提取一些共性的特点,然后进行提炼和总结,然后得出一些改进的意见。

中位数主要是反映的是一组数据的集中趋势,像我们比较常见的正态分布,比如说我们想去统计某市的人均收入,其实,大部分的人均收入都是在一定范围之内的,只有少部分是处于最低的和最高的,其实这是中位数带来的意义。

在做数据分析时,如果各个数据之间的差异程度较小,用平均值就有较好的代表性;而如果数据之间的差异程度较大,特别是有个别的极端值的情况,用中位数或众数有较好的代表性。

最大(小)值

最大(小)值在平时做数据分析工作时比较常见,只是我们没有特别去注意。最值是作为典型代表和异常值进行分析的,比如说销售团队里的销售冠军,电商爆款商品等。

11、综合评价分析法

将多个指标转化为一个能够反映综合情况的指标来进行评价,如企业经济效益评价。包括主成分分析法、数据包络分析法、模糊评价法等。

THE END
1.5种常用的原因分析方法在工作和生活中,面对各种问题和挑战,我们常常需要进行原因分析,以找出问题的根源并制定解决方案。而原因分析方法有很多种,每种方法都有其独特的优势和适用场景。下面我们将介绍5种常用的原因分析方法,帮助你更好地解决问题和提升工作效率。1. 5W1H分析法:What(什么):问题的具体表现是什么?Who(谁):问题涉及到https://baijiahao.baidu.com/s?id=1794035458734876799&wfr=spider&for=pc
2.R语言实现常用的5种分析方法(主成分+因子+多维标度+判别+聚类R语言多元分析系列之五:聚类分析 聚类分析(Cluster Analysis)是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法,它是在没有先验知识的情况下,对样本按各自的特性来进行合理的分类。 聚类分析被应用于很多方面,在商业上,聚类分析被用来发现不同的客户群,并且通过购买模式刻画不同的客户群的特征https://www.cloud.tencent.com/developer/article/1040208
3.常用的分析方法及模型有哪些?2.最常用的10种分析方法 3.通过一个案例做到举一反三 一、什么是分析方法?没有数据分析思路的人经常https://www.zhihu.com/question/20117449/answer/1743740034
4.分析方法有哪些3、结构分析法。根据某一指标占总体的百分比来观察。 4、相互对比法。选取某两个指标作为一组进行对比。 5、数学模型法。建造适合某一指标的数学模型来观察指标的变化。 以上五种定量分析方法,比率分析法是基础,趋势分析、结构分析和对比分析等方法是延伸,数学模型法代表了定量分析的发展方向。优选https://m.yyk.iask.sina.com.cn/q/87IXatDIcAIH.html
5.常用的数据分析方法有哪些?码住除了5w2h之外第二种根据用户行为组合进行分群,比如说每周在社区签到3次的用户与每周在社区签到少于3次的用户的区别,这个具体的我会在后面的留存分析中介绍。 4、用户细查 正如前面所说的,用户行为数据也是数据的一种,观察用户在你产品内的行为路径是一种非常直观的分析方法。在用户分群的基础上,一般抽取3-5个用户进行细查,即https://blog.csdn.net/maiya_yayaya/article/details/131395627
6.数据分析的方式有哪些?数据分析9种方法分享以上就是9种数据分析的 方式,使用九数云无需下载安装,可以完成各类复杂的数据指标的分析,与各种数据图表的制作。 数据分析的 方式有哪些?常见数据分析方法有哪些?今天给大家介绍9类数据分析的 方式。 1、对比分析法 是指将两个或两个以上的数据进行比较,分析它们的差异,从而揭示这些数据所代表的事物发展变化情况和规https://www.jiushuyun.com/hywz/2058.html