随着互联网金融和大数据时代的到来,银行在IT建设、数据采集方面都投入了大量的人力、物力和财力,CRM系统已普遍建立,基础建设初步完成。然而从整体来说,中国银行业由于在数据分析(analytics)领域经验的缺乏,战略上误将此项工作狭义化为IT工作,数据与客户仍然是隔离的,数据应用主要集中在后端,数据文化尚未形成,数据分析手段仍然比较原始,实际投入产出比不高。
不知道哪些客群应该重视、哪些应该放弃;
客户流失率很高却不知其原因,不知道如何进行客户流失分析与预判;
不知道如何通过数据分析与模型工具促发客户;
……
首先,将客户数据按照逻辑关系、层层深入划分、清理与分析。先运用数据分析方法将无效客户界定与排除,随后开展有效客户与潜在客户分析、有效客户精细化细分、潜在客户中分离出休眠客户分析等,通过层层分析与剥离,结合银行实际情况,得出对银行有终身价值的客户群。客户数据细分示例如下图:
那么,什么才是无效客户呢?例如,某零售银行帐户多达350万,暂无精确的客户数,账户金额0-100元达250万(占总账户的71%,可能为无效客户),100-1000元达40多万户,拥有庞大的代发账户。在项目实施之前,该行并没有认识到,中低端账户金额并不等于中低端客户。银行也不知代发客户如何使用其账户资金,不知为什么代发客户资金流出银行。
界定无效客户,需要将数据分析方法与银行实际情况相结合考虑。
排除无效客户之后,重点对有效客户和潜在客户进行深入挖掘与分析。
THE END