大数据的论文(模板12篇)

首先,大数据为我们提供了更全面和准确的信息。在过去,我们往往只能凭经验和感觉来判断事物的发展趋势和决策的方向。然而,随着大数据的普及,我们可以通过收集、分析和挖掘大量的数据,了解事物的真相和本质。比如,在市场营销领域,大数据可以帮助企业分析用户购买行为、消费偏好和市场趋势,从而制定更加精准和有效的推广策略。在医疗健康领域,大数据可以帮助医生分析患者的病例和治疗效果,为患者提供更加个性化和有效的治疗方案。通过大数据,我们可以更加科学地进行决策和规划,使我们的行动更加明确和高效。

其次,大数据为我们提供了更深入和全面的洞察。传统的数据处理方法往往只能分析孤立的数据点,而难以发现数据之间的联系和规律。然而,大数据具有强大的处理能力,可以将各个领域的数据进行整合和分析,从而帮助我们发现隐藏在庞大数据中的规律和趋势。比如,交通领域的大数据可以帮助我们了解城市交通状况和交通拥堵的原因,从而优化交通管理和规划。而在科学研究领域,大数据可以帮助科学家们分析海量的实验数据,发现科学事实和新的知识。因此,只有运用大数据的方法,我们才能够获取到更加准确、全面和系统的洞察,为我们的工作和生活带来更大的价值。

第三,大数据为企业和组织提供了更广阔的发展空间。在信息时代,数据已经成为企业竞争的重要资源。通过收集和分析大数据,企业可以了解市场需求、优化产品和服务,并制定合适的商业策略。比如,Amazon通过分析用户购买记录和偏好,为用户推荐个性化的商品,提高销售效率和用户满意度。而在政府组织中,大数据可以帮助政府进行城市规划、资源分配和社会管理,提高行政效率和服务质量。此外,大数据还为创新提供了更多的可能性。通过挖掘大数据中的信息和资源,创业者可以发现新的商业机会和创新方向,为社会的发展带来新的动力和活力。

综上所述,大数据对我们生活的影响力是巨大的。通过大数据的处理和分析,我们可以获得更全面、准确和深入的信息和洞察。大数据为企业和组织提供了更广阔的发展空间,也为创新提供了更多的可能性。然而,大数据的应用也面临着一系列的挑战和问题。因此,我们需要积极应对这些挑战,保障大数据的安全、隐私和合法性,从而更好地利用大数据的力量,为我们的社会和生活带来更大的进步和发展。

工作报告。

全国政协委员、联想集团董事长兼ceo杨元庆也在会议上呼吁“政府对个人信息安全立法,加强监管,并在整个社会中树立起诚信文化”大数据时代下维护个人安全成为重中之重。

(一)数据采集过程中对隐私的侵犯。

大数据这一概念是伴随着互联网技术发展而产生的,其数据采集手段主要是通过计算机网络。用户在上网过程中的每一次点击,录入行为都会在云端服务器上留下相应的记录,特别是在现今移动互联网智能手机大发展的背景下,我们每时每刻都与网络连通,同时我们也每时每刻都在被网络所记录,这些记录被储存就形成了庞大的数据库。从整个过程中我们不难发现,大数据的采集并没有经过用户许可而是私自的行为。很多用户并不希望自己行为所产生的数据被互联网运营服务商采集,但又无法阻止。因此,这种不经用户同意私自采集用户数据的行为本身就是对个人隐私的侵犯。

(二)数据存储过程中对隐私的侵犯。

互联网运营服务商往往把他们所采集的数据放到云端服务器上,并运用大量的信息技术对这些数据进行保护。但同时由于基础设施的脆弱和加密措施的失效会产生新的风险。大规模的数据存储需要严格的访问控制和身份认证的管理,但云端服务器与互联网相连使得这种管理的难度加大,账户劫持、攻击、身份伪造、认证失效、密匙丢失等都可能威胁用户数据安全。近些年来,受到大数据经济利益的驱使,众多网络黑客对准了互联网运营服务商,使得用户数据泄露事件时有发生,大量的数据被黑客通过技术手段窃取,给用户带来巨大损失,并且极大地威胁到了个人信息安全。

(三)数据使用过程中对隐私的侵犯。

(四)数据销毁过程中对隐私的侵犯。

由于数字化信息低成本易复制的特点,导致大数据一旦产生很难通过单纯的删除操作彻底销毁,它对用户隐私的侵犯将是一个长期的过程。大数据之父维克托迈尔-舍恩伯格(viktormayer-schonberger)认为“数字技术已经让社会丧失了遗忘的能力,取而代之的则是完美的记忆”[1]。当用户的行为被数字化并被存储,即便互联网运营服务商承诺在某个特定的时段之后会对这些数据进行销毁,但实际是这种销毁是不彻底的,而且为满足协助执法等要求,各国法律通常会规定大数据保存的期限,并强制要求互联网运营服务商提供其所需要的数据,公权力与隐私权的冲突也威胁到个人信息的安全。

(一)将个人信息保护纳入国家战略资源的保护和规范范畴。

大数据时代个人信息是构成现代商业服务以及网络社会管理的基础,对任何国家而言由众多个人信息组成的大数据都是研究社会,了解民情的重要战略资源。近年来大数据运用已经不再局限于商业领域而逐步扩展到政治生活等方方面面。国家也越来越重视通过对大数据的分析运用从而了解这个社会的变化以及人民的想法,甚至从中能够发现很多社会发展过程中的问题和现象,这比过去仅仅依靠国家统计部门的数据来的更真实全面,成本也相对较小,比如淘宝公布的收货地址变更数据在一定程度上揭示了我国人口的迁移,这些信息对于我国的发展都是至关重要的。

因此将个人信息保护纳入国家战略资源的保护和规划范畴具有重要的意义。2017年政府工作报告首次提出了“维护网络安全”这一表述意味着网络安全已上升国家战略。这是我国在大数据时代下对个人信息保护的重要事件,也具有里程碑的意义。

(二)加强个人信息安全的立法工作。

大数据的论文篇三摘要:传感器网络协议作为传感器与传感器之间,传感器与用户之间的通信媒介,在数据传输过程中因缺乏数据管理,经常导致传输给用户的数据是混乱的。针对上述问题,研究一种基于数据管理的传感器网络协议。该协议采用分层思想,将传感器网络协议分为四层:物理层、访问控制层、网络层以及应用层,并将传感器网络协议层集合成网络协议栈,完成数据有序传输。

关键词:数据管理;传感器;网络协议;协议层;协议栈。

目前存在的传感器网络协议由于层次划分的并不明确,经常导致采集到的数据出现混乱,不利于后期的数据管理(存储、处理和应用等)[1]。因此为方便后期数据管理,在数据管理的前提下,对传感器网络协议进行研究,以期解决数据混乱的问题。首先构建传感器网络协议层,协议层主要包括物理层、访问控制层、网络层以及应用层;然后将各层组合在一起构建传感器网络协议栈,协议栈主要为各层之间的数据传输提供软件方面的指导。基于数据管理的传感器网络协议研究,为数据通信工作奠定基础,加快了数据的`获取,方便了数据传输。

一、传感器网络协议研究。

传感器网络是微电子技术、嵌入式信息处理技术、传感器技术等几种结合并构建的一种属于计算机网络。数据量大且繁杂是当代大数据时代的特点,如果不对数据加以处理,人们要想快速、有效获得自己需要的数据,无疑大海捞针的,因此为应对当前传感器网络存在的问题,将设计好的网络协议嵌入其中是当前研究的重点课题之一[2]。

(一)传感器网络协议层。

(二)传感器网络协议栈。

协议栈,又被称为协议堆叠,是上述介绍的4个层次的总和,其实质反应了数据的往复传输过程。从下层协议的数据采集到数据传输再到上层协议的数据呈现,之后又从上层协议发出命令,命令下层传感器进行数据采集。传感器网络协议栈协调了不同层级之间的数据属性,在协议体系中,数据按照规定的格式加入自己的信息,形成数据位流,在各层级之间传递[5]。传感器网络协议标准采用了ieee802.15.4标准,各层级之间利用接入点实现数据交流和管理,一般接入点有两个,一个接入点负责数据传输,另一个接入点负责数据管理。在传感器运行过程中,各种不同属性的数据在不同层级上奉行不同命令。这样做有利于数据的有效分类,使得数据管理更为方便。

二、结束语。

传感器能够监测外部环境信息并按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求,广泛应用工业生产、机械器件制造、灾害监测、气象预测等诸多领域。但是由于传感器的监测是实时监测,所以数据量过于庞大,如果不加以管理,将会直接影响后期数据分析结果。本次研究针对上述问题,将数据管理作为中心指导思想,进行传感器网络协议研究,以期为数据管理做出技术支持。

参考文献。

探究式教学法是教师在教学过程中以问题为教学研究对象,组织教学内容,使学生通过对问题的了解、资料查询、阅读、思考、研究、探讨、交流和听讲,学会获取知识和应用知识,收集和辨析有效数据,系统地分析问题,获得解决问题的答案,并进行交流、评价的一种教学方法。其核心内容是通过问题的设定进而激发学生的学习热情,变被动为主动,把学生真正当成教学主体,培养学生养成创新思维模式。在摸索和探究中不断前行,从而系统地掌握课程知识内容并形成完整知识体系。

统计学原理课属于经济与管理类专业的一门必修基础课程。对构建学生基本知识体系,逐步形成分析和解决问题的方法体系尤为重要。然而该课程内容较多,包括了统计工作过程、综合指标体系、动态数列分析、指数分析、抽样调查推断、统计预测等多项内容。每一项内容均由完整的理论知识和独特的方法构成。知识点较多且晦涩难懂,学生不易理解掌握。尤其在以往的传统教学模式下,老师卖力地讲,拼命地试图将理论知识与生产生活实践相结合,却始终无法有效激发学生的学习热情。最终是“教师讲得累、学生打瞌睡”。鉴于此,我们结合经济与管理专业的非统计类专业特点,在我校四个经济与管理类专业的统计学原理教学中逐步引入“探究式教学”方法,把教学的主体定位到学生,充分挖掘学生的主观能动潜力,拓展学生的创新思维模式,增加学生实际动手能力。把教学课堂变成探究讨论场所,让传统的教学活动重新激起一个又一个的思维涟漪,收到了较好的教学效果。

一探究式教学法在统计学原理课程中的实施环节。

1问题选取。

要依据教学大纲的定位,同时又要结合非统计专业的现有实际,结合我校应用型本科的基本定位,选择难易适中且和工作实践紧密结合的内容。做到由易到难,逐渐加大难度,稳步推进,慢慢形成学生的探究思维定式。

2布置问题。

将选取的问题布置给各个小组。小组根据问题的大小与多寡,通常5~6人为一个小组。对于较单一的问题,可以多分几个组,各组的问题不强调其唯一性,可以重复,以便于比较不同小组的完成质量。对于较为复杂的问题,可根据问题的数量和工作任务情况,先确定各组组长(初期组长可由教师根据学生的综合能力统一指定,但随着探究活动的逐步开展,组长应鼓励个人报名或学生推荐),然后由学生根据自己的知识侧重和个人喜好选择小组成员。每一个小组承担不同的探究任务。但无论问题难易程度如何,都必须确保每一个学生分担不同的探究任务,不允许有学生轮空,也禁止探究能力较强的学生大包大揽(但不排除必要的协作)。

3迅速完成组内分工。

4收集分工情况,据此串讲知识点,引导学生的工作方向。

教师可收集各组分工情况的书面结果,根据分工结果分别讲授各方面、各环节涉及的知识内容。讲解应详略得当,有针对性,可以打破书本固有的知识点顺序。告诉学生在各自的工作中可能涉猎的知识内容,资料查找的方向以及分析解决问题要用到的方法。说到统计指数,涉及同度量因素,就涉及了物量指标和价值指标问题,涉及派氏、拉氏指数的选取,常用的cpi确定方法同样会牵扯到基期的选择、权数的确定。因而鼓励学生去查找相应的文献资料,并进一步思索可能出现的新问题。拉氏、派氏指数分别代表了哪一种思维定势和探究趋向指数体系的确立基于什么考量和出发点指数体系的确立和因素分析的实际意义在哪里等等。这种串讲,既为学生指明了工作的方向,帮助学生打开思路,同时又告知了基本的分析方法。

5文献检索,初步探究。

6集中讨论,相互激励,深入探究。

7课堂交流、汇报。

8教师讲评。

根据各组汇报结果,教师要进行及时讲评。既要对学生的分析运用能力给予充分肯定,又要对其在方法、思路上存在的问题给予指正。指导学生及时转换思路,回归正确的探究方向。探究式教学虽能够有效激发学生的探究热情,但由于学生认识问题和所学知识的局限性,极易形成学生“钻进去、出不来”。问题的叠加效应可能会打击学生探究热情,或导致“不可知论”。教师的及时讲评和肯定,是进一步引导学生回归探究学习正途的指南针。

二探究式教学法在应用中应注意的几个问题。

探究式教学可以很好地调动学生的学习积极性,最大程度激发学生的探究创新活力,提升教学质量和强化教学效果。但是在实际应用时必须注意以下几个问题。

探究式教学从表面看是把探究学习的主体转化为学生,但实质上绳子的另一端是教师。教师的备课、引导、启发在整个教学环节中起着至关重要的作用。教师的备课任务不仅不能削弱,而且更应该得到加强。从问题的选取设定到最后的验收讲评,教学的主线仍然紧握在教师手中。哪些问题可以选来作为探究目标,什么样的问题可以实施分组讨论、协作完成,都需要教师精心设计。这就需要教师具备完备的知识体系和对教学方法的综合把控能力。需要教师不断充电并择机走向生产实践一线,了解学科发展动态,始终站在学术发展前沿。

2探究式教学需要教师的及时引导和启发。

3探究式教学仍需要传统的课堂讲授模式加以配合。

对于学科的基础知识、基本概念我们很难将之归为探究式问题。加之学生在接收一门新的课程知识时往往出现短暂的不适应。因而教师仍要利用讲堂这一平台向学生讲解基础知识。教师在讲授这些内容的时候应着力使用启发式教学方法,多列举实例,多提出问题,逐步培养学生思考问题的能力,并产生探究问题的冲动和欲望。进而实现从传统教学模式向探究式教学的自然过渡。

统计学原理课程内容较多,结构复杂且难懂。但却是经济与管理类专业学生必修的一门方法论学科,在整个学科知识体系中占有重要位置。传统的课堂讲授模式无法激发学生的学习热情,很难收到良好的教学效果。实施探究式教学法,可以充分调动学生主观能动性,培养学生学习探究的良好习惯,为今后的实际工作和终身学习奠定基础。教师要先弄清楚探究式教学的真正意义,对探究式教学的实施环节、问题的选取、节奏的把控、效果的评定有着全面而深刻的认识。欲使探究式教学能够实现预期教学目的而非只是“标新立异”,则需要教师不断充实完善自我,做到高屋建瓴、游刃有余。

职责:

1、根据分析要求,制定数据采集标准和目标,对原始数据进行业务逻辑处理。

3、通过对公司运营数据研究,提出改善运营质量的方法和建议,搭建数据分析体系,为企业各级决策者提供支持。

任职要求:

2、1-3年金融领域数据分析,建模经验,熟悉逻辑回归,决策树等建模方法。

3、有较强的学习能力,能够快节奏地学习,研究,产出并能独立开展工作。

4、对于数据有敏锐的直觉,能够自主挖掘数据背后的市场方向、规律、为业务部门提供决策依据。

5、有软件开发,机器学习,数据库,hadoop/hive经验者优先。

在大数据时代的大数据管理形式不断发展过程中,给企业发展带来冲击非常巨大。因此,企业要根据我国信息技术不断发展的形式,对大数据管理框架进行全面的设计和创新,如图1所示。在大数据的处理的过程中,主要是围绕着数据资产进行管理的,同时对大数据时代的大数据管理制度,进行全面的规划行、设计、创新,这样对其它信息技术管理领域,提供了便利的条件。其实,大数据时代的大数据管理最主要的目的,就是将大数据的价值进行充分的展现。另外,在大数据时代的大数据管理框架不断创新的过程中,有效的实现了大数据共享等性能,不断扩大了大数据时代的大数据管理的内容,对我国现代化信息技术的发展,起到了重要的作用和意义。

2。2开发与内容的管理形式。

在不断提高大数据时代的大数据管理形式的过程中,可以从两个方面进行,一是大数据开发管理,二是内容管理。其中大数据开发管理注重于大数据管理的定义,和管理解决策略,对其大数据的存在价值,进行有效的开发。换句话说,其实也就是在大数据时代的大数据管理的过程中,对其管理形式的开发,对大数据的功能和价值,进行充分的理解。

大数据时代的大数据管理中的内容管理是指:企业对大数据进行不断的获取、使用、存储、维护等工作活动。因此,传统的大数据时代的大数据管理形式,已经无法满足对这个时代发展需求。因此,在时代快速发发展的推动下,要对开发管理和内容管理,进行全面的创新和设计,对需要专门设定的管理形式,要给予高度的重视,可以利用的集合型的保存形式,进行全面的保存。

其实,大数据时代的大数据管理主要是为企业提供重要的发展方向,为企业提供重要的价值信息。大数据时代的大数据管理在数据应用和开发的过程中,起到了重要的衔接作用,也为我国信息技术的发展,打下了坚实的基础。

在大数据时代的大数据管理的过程中,数据框架管理起到了重要的作用,并且与大数据开发的过程中,有很多相似的地方。在传统的大数据时代的大数据管理的过程中,对其数据的开发、处理、保存等形式,都受到了一定程度上的限制。因此,在对大数据时代的大数据架构管理的过程中,对其操作形式,进行了全面的管理创新,避免受到范围的限制。另外,随着大数据不断的增加,大数据构架管理可以根据大数据的用途,质量良好的应用形态。例如:社交网络等形式。

与此同时,在最近几年的发展中,大数据时代的大数据管理形式,也面临着新的挑战基机遇。以此,只有对大数据时代的大数据管理形式,对个人信息、隐私等进行全面的管理,避免个人信息、隐私等发生泄露、不对称等现象的发生,这样不仅仅企业在发展的过程中,提供了最大程度上的安全保障,也为大数据时代的发展,带来了新的发展篇章。

3结语。

综上所述,大数据时代是信息技术时代不断发展的产物,不管对我国经济的发展,还是人们在日常工作、生活的过程中,都起到了重要的作用和意义。因此,本文对大数据时代的大数据管理发展的历程进行了简要的分析,并对大数据时代的大数据管理形式,提出了一些可参考性的建议,只有对大数据时代的大数据管理形式,进行不断的创新,对大数据时代的大数据管理框架,进行不断的构建,也只有这样的才能在最大程度上促进了我国信息技术的发展,也为我国各行各业的发展,提供了重要的发展方向,对我国经济的发展,也起到了推动性的作用。

“除了上帝,任何人都必须用数据来说话。”――这是《大数据时代》中出现的让人印象深刻的一句话,也是全书力图传递的信息。在数字信息时代,数据和空气一样遍布生活,对于有些人来说,数据无意义,而对于有些人来说,数据,即真相。

美国是《大数据时代》的主角,全书通过讲述美国半个多世纪信息开放、技术创新的历史,公共财政透明的曲折、《数据质量法》背后的隐情、全民医改法案的波澜、统一身份证的百年纠结、街头警察的创新传奇、美国矿难的悲情历史、商务智能的前世今生、数据开放运动的全球兴起,web30与下一代互联网的未来图景等等,为读者一一细解数据创新给公民、政府、社会带来的种种挑战和变革。

透过全书,一个立体的美国及美国人民的思想呈现在我们面前――美国人民执著于个人隐私的保护,却又不遗余力地推动着政府信息的透明与公开。

读完此书,对生活中的数据及数据处理突然有了很大的兴趣。如果有一天,处处以数据说话,那么,政治、制度、生活将更加清明,事故、将降到最低点。

作为信息技术教师,是有必要阅读此书的!有慧根的教师将能从书中挖掘出信息技术特有的.文化以及能用于教学的鲜活案例。

随着时代的快速发展,招标代理企业的信息化进程是未来社会需求的必然产物,所以,企业只有不断提升信息化建设的速度、提高自动化运营的效率,才能与时代的发展保持一致,以免被社会所摒弃。在招标代理企业的信息化管理过程中,还必须引进先进的管理观念、高质量的人力资源以及科学的管理模式等。

信息化;招标代理;企业管理。

第一,增强服务意识,提高服务水平,争取领导重视。大数据时代的来临,档案管理工作会面临许多新情况、新特点、新问题。实现现代化的管理,需要提高领导干部的档案意识,配备先进的设备,实现档案管理的现代化,网络化。第二,加强档案管理教育培训,提高管理人员的综合素质。大数据的管理不在是传统的简单数据和信息的归集,在信息化管理工作中,提高管理人员的素质是有必要的。加强人才培养,实现竞争上岗,培训上岗,加强业务宣贯,为档案管理创造一个新台阶。第三,提高档案管理信息化利用水平。引进现代化档案管理设备,用于快速档案查阅、检索、分析,提高工作效率,实现档案管理的现代化办公。一是加大资金投入,不断完善档案信息数据库,不断摸索档案应用软件和实际工作的结合,建立可行的档案信息系统,提高档案数据的实用性,使得档案查阅更快捷、更方便、更可靠。二是建立规范的制度保障体系,提高信息化管理的技术水平。

今年两会,大数据第一次出现在政府的工作报告中,这表明,大数据已经上升到国家层面。为了适应大数据时期,档案管理工作对管理人员的要求越来越高,学习现代计算机技术、网络技术、多媒体技术,跟上当代时代的节拍,对高校的发展有着重要的意义。

作者:张贤恩高秀英单位:枣庄市团校。

[1]杨似海,闫其春.大数据背景下的高校图书馆档案管理策略研究[j].四川图书馆学报,2016,4(35):81.

如今说起新媒体和互联网,必提大数据,似乎不这样说就out了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典著作――舍恩佰格的《大数据时代》。维克托迈尔舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和ibm等全球企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的。预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,才能能与之进行一场思想上的对话。

舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。

在第一部分”大数据时代的思维变革“中,舍恩伯格旗帜鲜明的亮出他的三个观点:

一、更多:不是随机样本,而是全体数据。

二、更杂:不是精确性,而是混杂性。

大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可”量化“,大数据的定量分析有力地回答”是什么“这一问题,但仍然无法完全回答”为什么“。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。

在风险社会中信息安全问题日趋凸显。如何摆脱大数据的困境?舍恩伯格在最后一节”掌控“中试图回答,但基本上属于老生常谈。我想,或许凯文凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:”大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考的答案,帮助是暂时的,而更好的方法和答案还在不久的未来。“谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考的答案。

此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。

关键词:信息;rapi;dminer;大数据;挖掘;应用。

0引言。

透过线性回归、类神经网络、判定树和支持向量机,说明应用rapidminer进行大数据挖掘分析的运作流程,并介绍rapidminer的操作接口跟分析方法。本篇论文采用rapidminer的原因,主要是因为它拥有非常便捷的图形化接口,而且使用者在操作上不需要再额外去学习其它的程序语法,只需要透过选取组件以及设定参数的方式就可以完成。而且在分析结果的显示上也非常的多样化,可以让使用者自行选择要观看哪一种图形显示分析的结果。

1数据探勘流程探讨。

1.1资料清除。

是过滤掉数据当中的那些噪声和无法判别的资料跟不一致的数据,保留可用的且有效的数据。

1.2数据的整合。

不一定都来自相同的一个数据库,所以必须做数据的整合,将来自不同数据库的数据整合处理完后处理在我们的数据仓储。

1.3数据选择。

在数据探勘中是一个相当重要的环节,选到有用的数据可以提高分析预测的准确度,但是选到无用的数据却可能会拉低分析预测的准确度,所以在做数据的选择时必须先对这些数据有一定的认识,才能做出正确的选择。

1.4数据转换。

由于人类和计算机的沟通的语言不同,所以当我们要让计算机来处理事情时,必须先将手头的数据转换成计算机可以识别的资料格式,或合并成数据探勘所需的数据形式来让计算机判读,像是执行汇总与聚合。

1.5数据探勘引擎。

1.6样式评估。

样式评估根据某些有趣度量,来辨认代表知识的有趣样式,也可以说是评估数据跟数据之间的关联性是否是有用的、重要的、是否正确。

1.7用户接口。

这个模块让用户可以与数据探勘系统进行沟通,他允许使用者透过设定数据探勘查询或工作与系统进行互动、提供讯息来帮助搜寻,对暂时数据探勘结果进行探索性数据探勘。

2数据探勘工具。

2.1rapidminer。

rapidminer开源式框架,支持各种类型的数据挖掘像是文本、网络、图像或是链接开放式的数据挖掘[1]。透过它复杂的图形用户接口,数据挖掘的過程可以更加的简洁且快速,直观地实现和执行,并且不需要额外的程序语言编辑技术。

2.2weka。

weka用于数据挖掘任务的算法的集合,算法可以直接应用在数据集上,也可以从自己设计的jave代码调用[2]。weka它包含了数据的预处理、分类、回归、聚类、关联规则和可视化的工具也就是图形接口,weka可以算是最古老,且最成功的开元数据挖掘库和软件,随后被集成为rapidminer和r的扩充软件,也因为rapidminer和r的出现,它们提供了使用者更加舒适且便利的使用环境,使得weka的用户开始大幅的下降。

2.3knime。

knime图形接口的自由开源信息汇整系统,它具有杰出的数据统合能力,并且可以运用在数据查询(datamining)、数据处理、数据分析、流程绘制以及流程规划与管理(workflow)等等各方面。

3数据探勘工具比较。

rapidminer:独立平台;使用者:学习者、高级用户、专业用户、企业用户;用户接口:主要是透过图形接口来做流程的设计,也可以同时开启多个窗口来做操作;功能:大于500种,可透过扩展来新增额外的功能,且可扩展weka和r作为它的扩充元件,并进行协同工作;操作接口:简洁易懂的操作接口,不需要额外的学习程序语言的编辑能力,使用者只需要透过拉取所需的原件并且将其连接起来即可使用,使用者可自由配置操作接口;支持的输入格式:csv、excel、xml、access、aml、arff、xrff、spss、sasdatabases、jdbc....;支持输出模型格式:模型可以导出为不同的档案格式,像是bmp、jpg、pdf、postscript、raw、xml等各种文件格式。

weka:独立开发平台;使用者:学习者、一般用户;用户接口:图形接口;功能:约500种;操作接口:有四种模式可供使用者选择使用,每种模式都各有其优缺点,使用者需挑选最合适的使用模式使用;支持的输入格式:arff、csv、c4.5、bsi、localfile、urls、jdbc..;支持输出模型格式:不支援。

4结语。

现今是个信息科技的时代,几乎所有事情都是可以用数字和数据来解释的,每件事情的发生都会有它的前因后果,所以我们可以从这些数据当中找出这些因果关系,并且加以利用就可以预测出我们所要的结果,单单只有一大堆的数据是没用的,需要使用rapidminer这个数据挖掘分析软件,来从这些杂乱的数据库中萃取出我们所需要的信息,也就是从数据进行知识发掘,并且找出他们的相对应关系为我们使用。

[1]胡可云.数据挖掘理论与应用[m].清华大学出版社,2008.

关键词:大数据;财务信息管理。

大数据产生经历了被动-主动-自动三个发展阶段。第一阶段是数据库技术的出现。数据库技术被广泛应用于运营系统,数据伴随着系统的运转产生并被记录下来。这种数据的产生是被动的;第二阶段是互联网技术的诞生。新型社交平台的开发与各类便携式移动设备的使用,给人们更多的表达个人想法的途径与机会,这个阶段数据的产生方式是主动的;第三阶段是感知式系统的广泛应用。装配微型传感器的设备被广泛布置于社会的各个角落,这些设备源源不断记录下大量的新数据。这种数据的产生是自动的。这些被动-主动-自动记录与存储的数据共同构成了大数据的数据源。

2、财务信息类型增多。

3、财务管理职能前置。

传统的财务管理是事后管理,且局限于对现有数据进行简单的统计分析、查询。大数据的应用能够对企业经营情况进行实时分析和及时预测,提供更具时效性、指标多样化、更贴近经营管理需求的财务管理动态分析报告。财务管理的职能前置到市场预测、产品设计、供应链建设等价值规划阶段,财务体系由核算型向价值型转变。

1、提高财务信息质量。

2、强化财务信息整合。

[2]东梅.论财会信息的现代化管理[j].北方经贸,2013(2)。

[4]程平.云會计环境下人、数据和系统对会计信息质量的影响[j].重庆理工大学学报(社会科学版),2016(7)。

精准扶贫是政府提出的扶贫政策,其目的在于帮助贫困地区脱贫。精准扶贫中的扶贫资金,不仅涉及到政府管理部门,还涉及到社会各界及贫困地区经济发展,所以全面有效实施精准扶贫显得非常重。资料显示,大数据的应用能够使精准扶贫资金效益得到最大发挥,能够完善精准扶贫资金管理,使精准扶贫实现“真扶贫”。对此,笔者根据自己对“精准扶贫”及“大数据”的了解,分析了大数据助力精准扶贫的原理、问题及措施等。

“大数据”是社会经济及科学技术发展的产物,已经被应用于人们的生产及生活,对各大领域发展都起到了积极的推动作用。大数据是基于信息技术基础上对数据进行分析及整合的科学技术,其核心在于利用数据对信息进行分类、管理、整合、分析及处理,具有数据体量大、种类多、数据处理速度快及价值密度低等特点。

第一,在大数据支持下,遥感技术、媒体信息技术、宽带网络技术等都能够应用到精准扶贫工作中,如可以用这些技术调查和分析扶贫产业、贫困人口和周边环境等数据。第二,利用大数据能够实现对农村基础设施与地理环境、交通等信息整合,从而全面了解贫困对象基本信息及生活需求等。第三,在大数据支持下能够了解贫困地区的人口及经济水平等信息,为精准扶贫工作提供重要依据。

(一)对扶贫对象进行精准定位。第一,利用大数据下的媒体信息技术、通信技术及计算机技术等对贫困地区的人口进行调查,并确定符合扶贫要求的人群。第二,利用计算机信息技术对贫困对象进行建档立卡,并构建贫困人口的基本信息库,信息录入包括扶贫对象的年龄、工作、性别、年收入及家庭人口数量等。第三,信息录入后还需要进行基层走访、信息核实汇总,以保证扶贫对象信息的真实性,减少非贫困群体骗取和套取扶贫资金。

(三)利用“大数据”预测贫困需求。第一,利用大数据下的数学方法来定位扶贫方向,并分析扶贫对象实际需求。第二,利用大数据对扶贫对象的基本信息进行分析,并利用数学法计算贫困事情发生率,以了解扶贫对象的贫困需求,从而制定具有针对性的扶贫对策。第三,利用大数据中的遥感技术、媒体信息技术等构建扶贫资金管理系统及监督系统,以实时了解扶贫资金的取向及利用率,以保证扶贫资金能够真的解决扶贫对象的实际问题,减少资金浪费,最终提高精准扶贫工作质量及效率。另外,在精准扶贫中还需要注意以下两点:第一,实行脱贫工作责任制,保证扶贫工作执行力。第二,积极转变贫困人口的思想,引导贫困人口通过自身努力实现小康生活。

总之,精准扶贫是针对我国贫困地区提出的扶贫政策,已经在很多贫困地区得到贯彻,而大数据则能够提高精准扶贫工作质量及效率,使贫困地区脱贫速度加快,加快我国小康社会发展。基于此,上文先简单概述了大数据,然后分析了大数据助力精准扶贫的原理以及对精准扶贫的技术支持,并探讨了精准扶贫中存在的问题,最后分析了大数据有效助力精准扶贫的措施。

【参考文献】。

[1]解静静.大数据助力精准扶贫问题研究[j].江西农业,2019(14):131+135.

[3]李秀玲.大数据助力精准扶贫[j].中国国际财经(中英文),2018(07):197.

大数据的论文篇十一大数据从被人们所熟知到现在各大领域的广泛应用,标志着人类已经正式走入“第三次工业革命”时代。大数据在营销领域的应用使传统的营销活动变得更加的科学化和个性化,本篇大数据论文的笔者认为,在享用大数据带来的便利同时,需要兼顾大数据带来的伦理问题。

近些年随着移动互联网、物联网、云计算的迅猛发展,it业又出现了一个新名词——大数据(bigdata),“大数据”(bigdata)的横空出世是it行业又一次颠覆性的技术变革,且已在各行各业逐渐形成燎原之势,大数据的出现不仅给当今世界带来了翻天覆地的变化,同时也潜移默化的影响着人们生活的各个领域。

国外学者danielnunan()就指出了大数据可能会产生影响的五大领域:社交网、数据所有权、存储问题、数据收集、公众隐私,因此大数据时代各大领域都将迎来新一波的迅猛发展期,同时它也决定了未来商业的发展趋势,尤其在营销领域大数据与营销的结合更是颠覆了传统的营销模式。

2-1营销活动将更科学化。

大数据的特征是容量大、种类多、高速度和有价值,因此大数据时代的营销不再是基于经验和直觉,而是基于科学的数据分析进行精准营销。曾经有过一个经典的大数据案例讲的就是“啤酒与尿布”的故事,在20世纪末的美国沃尔玛超市中,超市的管理人员意外的发现两个毫无关联的物品啤酒和尿布会经常同时出现在一个购物篮中,后续研究发现原来是因为美国一般都是年轻的爸爸出来为小婴儿购买尿布,顺便为自己购买啤酒,当然其中就用到了商品间的关联算法,而大数据正是通过海量的数据来实现精准的营销为企业竞争赢得先机。

2-2营销活动将更个性化。

随着数据的挖掘、采集、分析等环节的效率不断地提高,大数据的大容量、高速度、多样性以及高价值四个特点使得个性化的营销服务成为可能。营销的最终目的就是能够准确的了解每一个潜在的或者现实的客户需求并为其提供满意的产品和服务从而实现利润最大化,而大数据恰好能够利用其显著的优势,从海量的数据中提取有用的信息,准确地把握客户的兴趣点,了解客户的个性偏好,因此大数据背景下利用网络技术平台提供个性化服务是未来的一大趋势。

2-3企业营销组织机构和人员工作职能将围绕数据展开。

大数据时代下对于企业来说数据是最重要最珍贵的资源,因而数据的收集和整理以及数据的分析和处理将是营销人员制胜的关键。因此营销人员的工作将更多的是围绕着数据的采集、分析和处理展开。在营销领域采用数据挖掘是营销发展到一定阶段的必然趋势,而数据挖掘技术的应用能对企业的营销管理带来很多显著的利益,因此未来企业的营销人员的职能会发生转变,以数据挖掘、分析为主的组织机构将会成为企业的重要职能部门。世界著名的管理咨询公司埃森哲和麦肯锡都先后发布报告称,数据科学家的需求将会持续扩大,未来如何培养高技能的数据人才会是各大数据业务公司的重中之重。

2-4营销活动将可预测。

大数据是一场技术性的革命,海量的数据资源使得营销管理开启量化的进程,而运用数据进行决策是大数据背景下营销模式的一个重要特征。未来企业的竞争将是数据的竞争,谁能挖掘潜在的客户掌握客户的需求谁将能取胜,因此企业营销活动的成败关键就在于是否能准确地判断顾客的价值,而大数据的出现使得营销管理活动能够实现精确的预测成为可能。大数据之“大”就是数据量大,能搜集全面和综合的数据,并再结合数据算法建模的使用,便能充分地挖掘数据间的相连性,从而来预测市场的发展趋势,帮助提升营销活动的'可预见性。

3大数据时代面临的挑战。

3-1数据的质量问题和数据人才的缺乏。

3-2数据的复杂化难以管理。

3-3公众和个人隐私问题日益凸显。

3-4数据精准性与服务精准性不对称。

尽管大数据营销可以让企业了解客户的需求,但精准的数据不一定能全面把握客户的心理活动。比如说一个顾客一直徘徊在商场一楼的鞋子特价区,此时这个顾客的举动可能说明了这个顾客对鞋子是有需求的,但不能说明这个顾客一定是一个价格敏感者。尽管大数据的确能够发现、跟踪和分析消费者的每个显性变化,但却无法全面把握消费者的内心活动,因为顾客的购买心理本来就是一个“暗箱”,他的购买行为是由很多因素综合决定的,可能是心理,可能是价格,还有可能是环境因素,等等。因此尽管大数据能够提供精准的数字,但却很难提供精准的预测,这里面涉及了一个不可确定性因素,就是顾客的心理。

4大数据背景下营销领域伦理问题的解决途径。

大数据对于营销领域来说是一把双刃剑,既是机遇也是挑战。它既能给企业带来巨大的商业价值,有效地提升企业的竞争力,同时也可能因为安全隐患问题给社会带来极大的危害。因此,本文试着从国家、企业以及技术手段三个层面来探讨如何有效地规避大数据自身带来的伦理问题。

4-1国家应当制定相应的法律法规来约束不法行为。

4-2通过行业自律来约束自身的伦理机制。

5结论。

大数据与营销管理领域的结合也是时代发展的必然趋势,更是企业在激烈竞争下取胜的关键举措。与此同时,我们在享受大数据带来的巨大商业价值时,也应客观的认识到大数据时代的安全相比传统安全更加复杂,对此理应结合法律的强制措施和行业的自律以及技术的显著优势,来保障大数据背景下营销朝着正确的方向发展。

大数据时代的教育管理在履行教育管理职能的过程中将更加凸显管理的及时性、前瞻性、区分性、整合性、权变性等特点,为教育管理的变革带来了大机遇。

THE END
1.大数据分析时代对市场营销的影响研究.pdf:..大数据分析时代对市场营销的影响研究引言大数据分析是当前信息技术发展的重要成果之一,它为企业提供了海量的数据资源,并通过强大的计算能力和算法模型,挖掘出隐藏在数据背后的商业价值。市场营销作为企业获取市场份额和实现利润最大化的重要手段,也受到了大数据分析的深刻影响。本论文旨在研究大数据分析时代对市场营销的https://m.taodocs.com/p-1119207896.html
2.大数据营销创新研究论文(精选8篇)篇1:大数据营销创新研究论文 关于大数据的烟草商业企业营销机制创新研究 一、引言 在物联网、云计算方兴未艾之际,大数据己开启了商业营销的新时代。相比互联网时代,大数据时代不仅意味着更广泛更深层的开放和共享,还意味着更精准、更高效和更智能的管理革命。从新产品设计概念化到定型完成至上市销售,传统营销方法一般进行https://www.360wenmi.com/f/filecvzx82bp.html
3.大数据技术在网络营销中的策略研究论文从小学、初中、高中到大学乃至工作,说到论文,大家肯定都不陌生吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。那要怎么写好论文呢?以下是小编帮大家整理的大数据技术在网络营销中的策略研究论文,欢迎阅读与收藏。 摘要: 当今,随着信息技术的飞速发展,互联网用户的数量日益增加,进一步促进https://www.yjbys.com/bylw/guanlixue/155035.html
4.大数据精准营销关键因素导读:一、大数据营销的背景和意义随着互联网的迅猛发展,企业面临的市场竞争日益激烈。传统的营销手段已经无法满足企业对精确目标群体定位和个性化营销的需求。而大数据的出现为企业带来了 本文目录一览 1、大数据精准营销的策略 2、大数据精准营销论文 一、大数据营销的背景和意义 http://chatgpt.cmpy.cn/article/4943895.html
5.饿了么大数据营销策略分析论文怎么写比较好帆软数字化转型知识库在撰写关于“饿了么大数据营销策略分析”的论文时,首先要明确饿了么通过精准用户画像、个性化推荐、智能配送优化等策略来提升用户体验和经营效率。饿了么利用大数据技术,通过收集用户的消费习惯、地理位置等数据,形成精准的用户画像。通过这些用户画像,饿了么能够为每一位用户推荐最适合的餐品和优惠活动,从而提高用户的满https://www.fanruan.com/blog/article/558005/
6.会议通知第一届大数据营销学术论坛暨《管理科学》杂志2024年本次论坛与《管理科学》杂志2024年营销专栏联合面向高校师生、研究机构同仁征集优秀论文成果,旨在为营造大数据营销领域的良好学术研究氛围、交流学术思想、展示研究成果和提升研究水平提供平台,诚邀各兄弟院校以及研究机构的学者和研究人员踊跃参与,并积极撰写相关论文。本次论坛将设立第一届中国大数据营销研究优秀成果奖,组委会https://sem.ustb.edu.cn/xwzx/tzgg/87584700e4884b21a35ce6243e0781b5.htm
7.大数据时代下的新媒体精准营销研究——以新浪微博为例(一)论文 3星· 超过75%的资源4 浏览量2021-08-18上传158KBZIP 在大数据时代,新媒体精准营销已经成为企业提升竞争力的关键策略。这篇以“大数据时代下的新媒体精准营销研究——以新浪微博为例(一)”为主题的论文深入探讨了这一领域的重要理论与实践。通过对新浪微博这一典型的新媒体平台进行案例分析,论文揭示了大数据如https://download.csdn.net/download/qq_44012932/21153167
8.中国移动营销策略中国移动充分利用社交媒体、套餐促销、优化用户体验、个性化营销等手段,不断提升市场竞争力。通过大数据分析和合作伙伴关系,中国移动能够更好地满足用户需求。中国移动将继续努力,保持市场领先地位,并为用户提供更优质的移动通信服务。 中国移动营销策略论文 一、引子:中国移动的巨大市场份额和成功 http://www.bangongqq.com/yxcy/44131.html
9.大数据分析背景下电子商务平台精准营销策略分析——以京东为例百姓论文网提供论文发表,职称论文发表,大数据分析背景下电子商务平台精准营销策略分析——以京东为例,论文发表价格,职称论文发表价格,毕业论文,发表论文,职称论文服务;咨询论文发表价格,职称论文发表价格,发表论文就上百姓论文网.http://www.baixinglunwen.com/Paper_View.asp?ID=2787&SortID=33
10.大数据技术在精准营销中的应用6篇(全文)全日制工学(工程)硕士学位论文开题报告 4研究方案及进度安排,预期达到的目标 2014年 9月 1日——2014年10月30日:调研、准备开题 2014年11月1日——2014年11月30日:去保险企业搜集数据,分析其数据特点,实验方案再论证 2014年12月1日——2015年1月15日:建立模型与建立实验环境 大数据技术在精准营销中的应用 第https://www.99xueshu.com/w/file4qjnx2kb.html