表2断裂失效模式和原因相结合的实用分类
表3列出断口宏观分析技术、显微分析技术、辅助分析技术、定量分析技术所用的工具、工作原理、特点、应用等方面的情况。这里需要指出的是,断口学研究的各种基本技能和方法是互相补充、相互促进的,在进行断口分析时,应根据实际情况选用不同的方法或方法组合,以获得最佳的结果。
表3断口学研究所用技术
(a)正拉应力(b)切应力(c)撕裂应力
图2应力状态对韧窝形状影响示意图
图3空洞聚集的过程
5.2.2解理断裂模式、河流形貌与解理分离的机理解理断裂是材料在正应力作用下,由于原子结合键的破坏而造成的沿一定的晶体学平面(解理平面)的低能断裂。解理断口最典型的微观形貌特征是河流花样,所谓“河流”实际上是一些台阶,它们把不同裂纹连接起来。由于形成台阶会消耗能量,所以河流花样会趋于合并,由“支流”汇合成“主流”,而减慢裂纹前沿的扩展。晶界对河流花样有显著的影响,当河流通过由刃型位错组成的小角度倾斜晶界时,只是简单的改变方向,继续在相邻晶粒内继续“流动”;当通过由螺型位错组成的扭转晶界时,河流会激增或消失。在解理断裂的断口上,还可以经常看到“舌头”花样和“鱼骨状”花样,这是由于解理裂纹与机械孪晶作用的结果。解理裂纹萌生机理有Stroh位错塞积理论、Cottrell位错反应理论及Smith理论。解理台阶的形成可用螺位错与解理面交截来解释。不同高度的两个解理面的分离有两种形式,沿次生解理面解理形成台阶,通过撕裂形成台阶,如图4所示。
图4两个解理平面分离示意图
5.2.3沿晶断裂模式、颗粒(冰糖状)形貌与沿晶分离机理当金属或合金材料的晶界为显微组织中最薄弱部分的时候,会发生沿晶断裂。
沿晶断口又可分为沿晶分离断口和沿晶韧窝断口。颗粒(冰糖状)形貌是沿晶分离断口的典型形貌特征,晶界上有大量细小韧窝是沿晶韧窝的形貌特征。晶界弱化或晶间脆性是导致沿晶分离的根本原因。沿晶分离的机理大致可分为五类,本征晶间脆性(晶间聚合力低),晶界沉淀造成的晶间脆性,杂质元素在晶界偏析引起的晶间脆性,特定腐蚀环境促进晶间脆化和高温下的沿晶分离(蠕变)等。蠕变沿晶断裂有两种断裂机制,晶界三叉结点处开裂机制和晶间空洞机制,如图5所示。以哪种机制开裂取决于应变速率和温度,相对高的应变速率和中等温度时会在三叉晶界处萌生裂纹随后发展为楔型裂纹;低应变速率和高温时,以晶间空洞的形式开裂。蠕变沿晶断裂晶界上的空洞与韧窝断裂时的显微空洞不同,前者主要是扩散控制过程的结果,而后者则是复杂滑移的产物。
图5蠕变沿晶断裂机制,箭头表示晶界的滑动方向
图6驻留滑移带上的挤出峰和挤入槽
5.2.4疲劳断裂模式、条带形貌与疲劳断裂机理疲劳是材料在交变应力(远低于屈服应力)持续作用下发生的断裂现象。
疲劳断口上最显著的特征是疲劳条带,有时会出现轮胎痕迹,平行于条带方向的二次裂纹也很常见。疲劳条带是一系列相互平行的条纹,条带的法线方向与裂纹局部扩展方向一致,疲劳条带间距单调递增或递减。
广为接受的疲劳裂纹萌生机制为不均匀变形引起裂纹萌生。交变应力作用致使金属表面产生不均匀滑移并形成驻留滑移带,进而驻留滑移带上形成挤出峰和挤入槽(如图6),导致裂纹的萌生。
图7疲劳裂纹扩展的两个阶段
此外,还有沿晶界裂纹萌生机制和沿夹杂物或第二相粒子裂纹萌生机制。
图8裂尖塑性钝化形成疲劳条带模型
图9疲劳裂纹扩展的裂尖滑移模型
氢降低表面能理论———氢吸附在裂尖表面上,由于改变了表面的状态而降低了表面能,导致断裂功下降。氢蚀理论———氢在晶界与渗碳体发生反应生成甲烷气泡,导致断裂。氢化物理论———氢形成易开裂的氢化物,氢化物析出降低韧性。此外,还有位错吸氢机制,氢促进位错生核机制,氢促进微空洞形核长大机制等。上述机理都有一定的适用范围。2)应力腐蚀断裂受应力的材料在特定环境下产生滞后开裂,甚至发生滞后断裂的现象称为应力腐蚀。应力腐蚀断口微观形貌的基本特征是裂纹起始区大多有腐蚀产物,有时会看到网状龟裂的“泥纹花样”,铝合金的应力腐蚀断口常常是冰糖状的沿晶特征,而奥氏体不锈钢的应力腐蚀断口上经常可以看到平坦的“凹槽”区。与氢脆一样,关于应力腐蚀的机理也有很多种,比较为人们接受的为滑移溶解机理。
金属或合金在腐蚀介质中可能会形成一层钝化膜,在应力作用下,钝化膜破裂而露出局部的“新鲜”金属,该处相对未破裂部位是阳极区,会发生瞬时溶解。新鲜金属再钝化,钝化膜形成完全后溶解停止,由于已经溶解的区域存在应力集中,因而该处的钝化膜会再一次破裂,又发生瞬时溶解。这种膜破裂(通过滑移或蠕变)、“新鲜”金属溶解、再钝化过程的循环重复,导致应力腐蚀裂纹的形核和扩展。5.2.6过渡断裂模式、混合特征形貌与交叉断裂机理1)准解理准解理是介于解理断裂和韧窝断裂之间的一种过渡断裂模式。准解理断口的微观形貌特征为,断口上有大量高密度的短而弯曲的撕裂棱线条、点状裂纹源由准解理断面中部向四周放射的河流花样、准解理小断面与解理面不存在确定的对应关系、二次裂纹等。
至今被人们普遍接受的准解理模型如图10所示。首先是在不同部位同时产生许多解理小裂纹,然后这种解理小裂纹不断长大,最后以塑性方式撕裂残余连接部分。按上述模型,断裂的断口上最初和随后长大的解理小裂纹即成为解理小平面,而最后的塑性方式撕裂则表现为撕裂棱(或韧窝、韧带)。
图10准解理形成示意图
2)“凹槽”在具有复杂显微组织的合金(如钛合金)断口中有时会出现“凹槽”显微特征———拉长的槽或空洞连接解理面。
在某些合金中“,凹槽”的形成与多种断裂模式(如疲劳、过载或应力腐蚀开裂)有关。由交滑移机制在解理裂纹间形成的管状空洞开裂会形成凹槽,在匹配断口上对应撕裂棱。“凹槽”长条状的几何形状与显微组织中伸长的晶粒有关。5.3断口特征形貌的物理数学模型和断口的定量反推分析5.3.1疲劳断口特征形貌(疲劳弧线、沟线)的物理数学模型定量分析文献等以金属的疲劳宏观断口为对象,对疲劳断口上的疲劳弧线、疲劳沟线的物理数学模型进行分析,得到了以下颇有启发性的结果。
图11人字纹花样形成模型
根据上述模型,用数学方法可推导出人字纹花样的曲线方程。
可以看出,人字纹为一指数曲线,它的形状决定于。5.3.3断口定量反推分析断口定量反推是通过对断口形貌特征和其他信息的定量描述,在断口特征形貌与力学性能及断裂过程的各种参数之间建立起关系,达到从断裂结果到断裂过程的反向推导,深入了解断裂本质,精确判定断裂模式和影响参量。断口的定量反推可分为断口宏观定量反推和断口微观定量反推,表4列出当前较为常见的断口微观定量反推。可以看出,断口微观定量反推主要是根据断口上的特征形貌尺寸来反推断裂过程的应力状态。