Thesystemcanhandlemosttaskspreviouslyhandledbyhumanswhiledoingitfasterandcheaper.Thissignificantbenefithaseasedstakeholders’healthsectoractivities,especiallyhospitaladministrators,doctors,andpatients.
Artificialintelligencehascontinuedtoreinvigorateandreinventitself.Therearenowmodernmachinelearningsolutionscapableofacting,learning,understanding,andpredicting.Thisisastepfurtherthanthesurgery-assistingrobotsandlinkinggeneticcodespreviouslydrivenbyAI.
Artificialintelligencedevelopmentinhealthcarecomeswithsomerisksandchallenges.Forinstance,AIsystemerrorsputpatientsatriskofinjuries.Likewise,thepatient’sdataforAIreferenceputsthepatientattheriskofprivacyinvasion.
ThispostdiscussesthemajoropportunitiesthatcomewithAIwhiletouchingonthechallengesandrisksthatcomewithsuchopportunities.Wewillstartwiththeadvantages.
TableofContents
WithAIinnovations,thesedisadvantagedareascanenjoyanefficienthealthcareecosystem.AI-backeddigitalsystemscanfacilitatepatientdiagnosisandtreatment.Therearededicatedapplicationsdevelopedtohelpinternationalandnationalhealthcareorganizationscometogetherandrendernecessaryassistancetopeoplewhoneedthem.
ExplorehowAdareactedtotheglobalpandemicsbyenablingdiseaseself-assessmentsacrossthecountries.
2.SharingInformationIsSimple
EasyinformationsharingisanadditionaladvantageofArtificialIntelligenceinhealthcarethatmeritsmention.TofullyrealizethepotentialofAIandprecisionmedicine,algorithmsmustbeabletoanalyzelargeamountsofdataquickly.
Artificialintelligenceinhealthcarecanlocateparticularpatientdatamoreeffectivelythanconventionalcare,givingdoctorsmoretimetoconcentrateonmedicationsandtreatments.
Theconditionrequiresimmediatetreatmentandmanagement,andArtificialIntelligencecanprovideproviderswithdata-drivenassistance.Forinstance,aglucosebroadcastingsystemenablespeoplewithdiabetestomonitortheirglucoselevelsinreal-timeandacquirereportstodiscussandmanagetheiradvancementwithphysiciansorsupportgroups.
Wearabledevicedatacanindicatethelikelihoodofcontractingaparticulardisease.ArevolutionaryhealthcaredatatreasuretrovecouldemergeasthehealthcareindustryusesAItostore,collect,andanalyzedata.
3.Earlydiagnosis.
AI-driventoolsnowrelyonpeople’sdatatoassessthepreviousandpresenthealthissuesofpatients.Bycomparingthediseasedetails,healthcareprofessionalsarepositionedtodiagnosemoreaccurately.Thedatabaseinseveralhealthcaremobileappshascomputedmillionsofsymptomsanddiagnoses.Moreimportantly,itcanpredictthepotentialhealthissuesanindividualcanencounterinthefuture.
ThankstoAIalgorithms,healthcareprocessesarenowfasterandatafractionoftheoriginalcosts.Frompatientexaminationtodiagnosis,theAIhasreallychangedthegameintermsofspeedandcosts.Forinstance,theAIcanidentifythebiomarkersthatsuggestdiseaseinourbodies.AI-algorithmshaveminimizedthemanualworkinvolvedinspecifyingthesebiomarkers.Themassiveautomationmeanswecannowsavemorelivesbyactingfaster.
Patientshaveapoorexperienceduetocrowdedandchaotichealthcarefacilities.UtilizingAIcanhelppatientsquicklynavigatethroughdata,obtainreports,andbedirectedtowheretogoandwhotosee,therebyavoidingtheusualconfusioninhealthcaresettings.Arecentstudyrevealsthat,accordingto83%ofpatients,poorcommunicationisthemostunpleasantaspectoftheirexperience.
6.Efficientanduniqueassistanceinsurgery
ArtificialIntelligencedevelopmenthastakenahugeleapinroboticapplications.Thesameisthecaseformachinelearningimplementationinsurgery.TherearededicatedAISurgicalSystemsthatcanexecutethetiniestmovementswith100%accuracy.Thismeanswecandocomplexoperationsefficientlywithreducedrisksofsideeffects,bloodloss,orpain.Likewise,post-surgeryrecoveryisfasterandeasier.
Forinstance,patientswaitingforoperationsaresubjectedtoAntibacterialNanorobotstoeliminateallinfectionsintheirbloodbeforegoingundertheknives.Perhaps,thebestpartistheAI-backedinformationonthepatient’spresentsituation,availabletosurgeonsinreal-time.Thishashelpedtoquelldoubtsinpatients,especiallyregardingsurgeryundergeneralanesthesia.
7.Enhancedhumanabilitiesandmentalhealthsupport
Robotscannowassistpatientsalongsidethemedicalstaff.Forinstance,exoskeletonrobotscanhelpparalyzedpeopleregaintheirmobilitywithlittleornohelpfromcaretakers.Likewise,smartAI-backedprosthesesarefittedwithsensorsthatserveasmorereactivelimbsthantraditionalmodels.
Servicerobotsfrommachinelearningimplementationcanhandledailytasksandkeepthecompanyofpatients.Therearededicatedcompanionandconversationalrobotsthatcarryoutnecessarytestsandchecks–sugarlevels,bloodpressure,controllingtemperature,andeventakingpills.Therearerobotsdevelopedtohelpdepressedpatients,thankstotheirin-builtanalyticcapabilities.Withthesecapabilities,theycananalyzethemodofthepatientsandhelpthemfeelmorepositive.
That’sallaboutthebenefits.Now,let’smovetothechallenges.
JustlikethereisaYinandYangineverything,thereareadvantagesanddisadvantagesofartificialintelligenceinhealthcareindustryaswell.DespitethemassiveprogressthatcomeswithArtificialIntelligencedevelopment,fewnotablechallengesareyettobesorted,mainlywhenitinvolvesdata.Togetthebestoutofartificialintelligencedevelopmentandmachinelearningimplementation,weneedtosolvechallengeslike:
1.Datadigitizationandconsolidation.
Theunderlyingprincipleinmost,ifnotall,AIprojectsisthegarbage-in-garbage-outprinciple.WithoutthemassivechunkofdatafedintotheAIsystems,itispracticallyimpossibletogetresults.Thisiswhyitisimportanttosourcehigh-qualityhealthcaredata–amovethathasbecomeincreasinglydifficultovertheyears.Thedifficultyisattributedtothefragmentedandunorganizedhealthdataspreadacrossvariousdatasystemsandorganizations.Patientschangeinsuranceprovidersandhealthcareproviderstoofrequently,makingdataacquisitionachallenge.
Withupdatedanddigitalrecordsystems,improvedaccuracyandefficiencyisguaranteedinthehealthcaresector.Thisiswhyhealthcarestakeholdersmustperfectdigitizationandconsolidationofmedicaldata.ItistheonlywaytofeedtheAIwiththeinformationneededtodeliveraccurateanalysisanddriveefficientprocesses.
ThesuccessfulimplementationofAIwithinyourownbusinessisanotherobstacle.Inaddition,properexpertswithknowledgeofthehealthcareindustryandexperiencecreatingAI-integratedsolutionsarehighlyrequired.Nevertheless,Datascienceisasmallareaofexpertise.
3.Updatingregulations
Therearetonsofstrictconfidentialityandprivacylawsguardingmedicalrecordsworldwide.Withsuchprotection,wecaninterpretdatasharingamongAIsystemsintolegalviolations.Incaseswhereitislegal,patientsmustprovidetheirconsenttoobtainmedicaldataandusethemforsuchpurposes.
Thelogisticalchallengethatcomeswiththisisimmense.Thereisaneedforflexiblerulesonmedicaldataacquisitionwithidentityprotection.Medicalinstitutionsmustalsoensurestrictcompliancewithsuchrulesandbeaccountableforpatientdataacquisitionanduse.Thisisthemostviablewaytocurateaccurate,high-qualitymedicaldataforAItechnologies.a
4.Humaninterventions.
AgoodnumberofpatientsandmedicalprofessionalshavedoubtsaboutAI.Radiologistsdonotwantrobotstotakeovertheirjobs.Patientsdonotwanttosurrenderthemselvestomachinestodealwiththeirhealthconcernsproperly.
Withoutcorrectingtheseimpressions,itwon’tbeeasytobuildanAI-drivenhealthcaresystem.AIshouldbeseenasahelperdesignedtoassisthealthcarepractitionerstoexecutetheirdiagnosticroles.TherightmindsetiskeytoembracingAI-assistedmedicalpractices.
Let’sdiscussthepotentialrisksassociatedwithAIinthehealthcaresector.
1.Errorsandinjuries.
AIsystemsarepronetoerrors,whicheventuallyleadstopatientinjuryorothersignificantproblems.Forinstance,apatientmaytakeadrugwronglyrecommendedbytheAIsystem,leadingtomorequestions.Likewise,theAI-drivenradiologicalscanmaymissatumor.ThewrongallocationofahospitalbedbasedonAIpredictionscanleadtoinjuriesandrelapse.
ThebiggerproblemwithAI-relatederrorsisthepotentialtobefar-reaching.Tonsofpatientscouldsufferfromjustoneerror.Likewise,nofamilyorfriendwilltakeitlightly,hearingthattheirlovedonesufferedasetbackbecauseofacomputererror.TheonlinepatientreviewsystemmeansitismorecomfortabletoputoutabadwordaboutAIcapabilitiesbuttoughtorecallit.
2.Privacyissues.
Privacyisaseriousconcernregardingpatientdataacquisition.Whileresearchershavemeasuresinplacetoprotectpatientdata,therearemalicioushackersouttheretryingtogetaccessatallcosts.IfagiantlikeGooglecanhaveprivacyandpatientdataissues,thenitmeansnooneinAIshouldoverlookprivacyissues.
AnotherwayprivacyisatriskwithAIisthesystem’scapabilitytopredictinformationaboutpatients,evenwhenthealgorithmwasnotfedwithsuchdata.
3.Inequalityanddiscrimination.
4.Professionalreshuffling.
Inthisarticle,wehavealreadydiscussedtherequirementforhigh-qualityinformation.However,thereisasubstantialriskofincorrectdiagnosisifArtificialIntelligencesystemsarenotmanagedwithsufficientinformationfromvariousbackgrounds.DoctorsonlyhavesufficientAIexperiencetopointoutamistakeifAIcanbeexplained.Accountabilityisquestionedintheeventofawrongdiagnosis.
Forinstance,isthedoctorinchargewhousedAItomakethedecisionresponsibleforthemishaporerrorHealthcaremayfaceavarietyofethicalquandariesasaresultofAIdeployment.However,itisessentialtocomprehendthatmedicalandAIdiagnoseshaveanedgeoferror.Aworldwideresearchonprimarycaremistakesfoundthat5percentoutofallthepatientsreceiveanincorrectdiagnosisandAtertiaryofallseriousillnessesmisdiagnosesthatresultinharm.
Finally
Whiletherearerisksandchallenges,itisclearthatroboticsandAIbringhugebenefitstotheglobalhealthcareecosystem.TheInternetofMedicalThingsandAI-driventoolshaverecordedsignificantsuccess,especiallyinhumanlives.WithAI,wearenowbetteralignedwithconscioushealthmanagementandanoverallhealthylifestyle.
UpendraPatelisDirector&FounderatTriStateTechnology.Heisanenthusiastictechno-savvyperson,andcloselyfollowsalltechnologicalplatformsacrosssoftwaredevelopmentindustry.Hehasanexperienceof20+yearswiththeSoftwareindustryandheisactivelyinvolvedinupcomingsoftwaretechnologyimplementationtrends.HehasanextensiveexperienceindeliveringsoftwaresolutionsfordifferentindustrieslikeHealthcare,Finance,Insurance,Logistics,Education&Ecommerce&Retailetc.HisdiversifiedexperienceincludesProjectManagement,DeliveringManagement,TechnologyArchitecture&StrategicRoad-Mapping.Underhisleadership,TeamTriStatehasshownasignificantgrowth.Withhisstrategicallythoughts,hedrivesteamexceptionallywell.
406,4thfloor,OneWorldWest,SardarPatelRingRd,SouthBopal,Bopal,Ahmedabad,Gujarat380058
3400W.StonegateBoulevard,suite101,ArlingtonHeights,IL60005USA