2023年平行线的性质和判定(5篇)

1.使学生掌握平行线的三个性质,并能运用它们作简单的推理。

2.使学生了解平行线的性质和判定的区别。

重点难点:

1.平行的三个性质,是本节的重点,也是本章的重点之一。

2.怎样区分性质和判定,是教学中的一个难点。

教学过程:一、巩固旧知,问题引入。巩固平行线的判定方法,并引导学生分析平行线的判定是由一些角的关系得出平行的结论在学生分析的基础上,提出若交换判定中的条件与结论,能否由“两直线平行”得出“同位角相等”等一些角的关系,从而引入课题。二、实验验证,探索特征。

1、教室的窗户的横格是平行的,请看老师用三角尺去检验一对同位角,看看结果怎样?(教师用三角尺在窗户上演示,学生观察并思考)

2、学生实验(发印好平行线的纸单)

(1)已知,a//b,任意画一条直线c与平行线a、b相交。

(2)任选一对同位角,用适当的方法实验,看看这一对同位角有什么关系

(要求学生多画几条截线试试,鼓励学生用多种方法进行探索)

3、实验结论:

两条平行线被第三条直线所截,同位角相等。

简记为“两直线平行,同位角相等”

识记该性质,并讨论在这个特征中,已知的是什么,结论是什么?它与前面学过的“同位角相等,两直线平行”有什么不同?

4、问题讨论:

我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角。我们已经知道“两条平行线被第三条直线所截,同位角相等”。那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系呢

如图,已知直线a//b,思考∠1与∠2、∠2与∠3之间有什么关系?为什么?

此能否积极地、有条理地思考)

结论:“两直线平行,内错角相等”

“两直线平行,同旁内角互补”

(识记这两个性质,并思考已知什么条件,得出什么结论,与“内错角相等,两直线平行”“同旁内角互补,两直线平行”有什么不同。)

5、归纳平行线的三个性质及三个判定

三、例题学习,实践运用。

求一求

例:如图,ad∥bc,ab∥dc,∠1=100o,求∠2,∠3的度数

(二)做一做:如图,一束平行光线ab与de射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4,(1)∠1、∠3的大小有什么关系?∠2与∠4呢?(2)反射光线bc与ef也平行吗?

先由学生回答,用自己的语言说理,然后再出示以下说理过程,由学生说明每一步的理由。

(三)考考你:

如图是举世闻名的三星堆考古中发掘出的一个梯形残缺玉片,工作人员从玉片上已经量得∠a=115o,∠d=100o.已知梯形的两底ad//bc,请你求出另外两个角的度数。

(学生尝试用自己的方式书写说理过程)

(四)填空:

已知:如图,∠ade=60o,∠b=60o,∠c=80o.

问∠aed等于多少度?为什么?

∵∠ade=∠b=60o(已知)

∴de//bc(_______________________________________)

∴∠aed=∠c=80o(____________________________________)

(通过填空题,检验学生对平行线的判定与性质的区分)

四、课堂小结:

1、说说平行线的三个性质是什么?

2、平行线的性质与平行线的判定的区别:

判定:角的关系平行关系

性质:平行关系角的关系

3、证平行,用判定;知平行,用性质。

五、课后作业:

教材52页1、2、3题平行线的

教学目标

1.使学生理解平行线的性质和判定的区别。

2.使学生掌握平行线的三个性质,并能运用它们作简单的推理。

重点难点

重点:平行线的三个性质。

难点:平行线的三个性质和怎样区分性质和判定。

关键:能结合图形用符号语言表示平行线的三条性质。

教学过程

一、复习

1.如何用同位角、内错角、同旁内角来判定两条直线是否平行?

2.把它们已知和结论颠倒一下,可得到怎样的语句?它们正确吗?

二、新授

1.实验观察,发现平行线第一个性质

请学生画出下图进行实验观察。

设l1∥l2,l3与它们相交,请度量∠1和∠2的大小,你能发现什么关系?

请同学们再作出直线l4,再度量一下∠3和∠4的大小,你还能发现它们有什么关系?

平行线性质1(公理):两直线平行,同位角相等。

2.演绎推理,发现平行线的其它性质

(1)已知:如图,直线ab,cd被直线ef所截,ab∥cd.

求证:∠1=∠2.

(2)已知:如图2-64,直线ab,cd被直线ef所截,ab∥cd.

求证:∠1+∠2=180°.

在此基础上指出:“平行线的性质2(定理)”和“平行线的性质3(定理)”。

3.平行线判定与性质的区别与联系

投影:将判定与性质各三条全部打出。

(1)性质:根据两条直线平行,去证角的相等或互补。

(2)判定:根据两角相等或互补,去证两条直线平行。

联系是:它们的条件和结论是互逆的,性质与判定要证明的问题是不同的。

三、例题

例2如图所示,ab∥cd,ac∥bd.找出图中相等的角与互补的角。

此题一定要强调,哪两条直线被哪一条直线所截。

答:相等的角为:∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8.互补的角为:∠bac+∠acd=180°,∠abd+∠cdb=180°,∠cab+∠dba=180°,∠acd+∠bdc=180°.

相等的角还有:∠acd=∠abd,∠bac=∠bdc.(同角的补角相等)

例3如图所示。已知:ad∥bc,∠aef=∠b,求证:ad∥ef.

分析:(执果索因)从图直观分析,欲证ad∥ef,只需∠a+∠aef=180°,

(由因求果)因为ad∥bc,所以∠a+∠b=180°,又∠b=∠aef,所以∠a+∠aef=180°成立。于是得证。

证明:因为ad∥bc,(已知)

所以∠a+∠b=180°.(两直线平行,同旁内角互补)

因为∠aef=∠b,(已知)

所以∠a+∠aef=180°,(等量代换)

所以ad∥ef.(同旁内角互补,两条直线平行)

四、练习:

1.如图所示,已知:ae平分∠bac,ce平分∠acd,且ab∥cd.

求证:∠1+∠2=90°.

证明:因为ab∥cd,

所以∠bac+∠acd=180°,

又因为ae平分∠bac,ce平分∠acd,

所以,,

故.

即∠1+∠2=90°.

(理由略)

2.如图所示,已知:∠1=∠2,

求证:∠3+∠4=180°.

分析:(让学生自己分析)

证明:(学生板书)

小结

我们是如何得到平行线的性质定理?通过度量,运用从特殊到一般的思维方式发现性质1(公理),然后由公理通过演绎证明得到后面两个性质定理。从因果关系和所起的作用来看性质定理和判定定理的区别与联系。

作业:

1.如图,ab∥cd,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?

2.如图,ef过△abc的一个顶点a,且ef∥bc,如果∠b=40°,∠2=75°,那么∠1、∠3、∠c、∠bac+∠b+∠c各是多少度,为什么?

3.如图,已知ad∥bc,可以得到哪些角的和为180°?已知ab∥cd,可以得到哪些角相等?并简述理由。

5.3平行线性质(二)

[教学目标]

经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条件表达能力

理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论

能够综合运用平行线性质和判定解题

[教学重点与难点]

重点:平行线性质和判定综合应用,两条平行线的距离,命题等概念

难点:平行线性质和判定灵活运用

[教学设计]

一。复习引入

1.平行线的判定方法有哪些?

2.平行线的性质有哪些?

3.完成下面填空

已知:be是ab的延长线,ad//bc,ab//cd,若则

4.那么a,c的位置关系如何?

二。新课

1.例1,已知a//c,直线b与c垂直吗?为什么?

例2如图是一块梯形铁片的残余部分,量得,梯形另外两个角分别是多少度?

2.实践与探究

(1)学生操作:用三角尺和直尺画平行线,做成一张

个格子的方格纸。观察并思考:做出的方格纸的一部分,

线段…都与两条平行线垂直

吗?它们的长度相等吗?

教师给出两条平行线的距离定义:同时垂直于两条平行线,

并且夹在这两条平行线间的线段长度叫做两条平行线的距离。

问题:ab//cd,在cd上任取一点e,作垂足f,问ef是否垂直dc?垂线段ef是平行线ab、cd的距离吗?

结论:两条平行线的距离处处相等,而不随垂线段的位置而改变

3.命题和它的构成

下列语句,分析语句的特点

(1)如果两条直线都与第三条直线平行,那么这两条直线也平行。

(2)对顶角相等

(3)等式两边同加上同一个数,结果仍是等式

(4)如果两条直线不平行,那么同位角不相等

这些句子都是对某一件事情作出“是”或“不是”的判断

命题:判断一件事情的句子,叫做命题

(1)命题的组成:命题由题设和结论两部分组成,题设是已知项,结论是由已知项推出的事项(2)形式:通常写成“如果…,那么…”的形式,

三。巩固练习

1.“等式两边乘以同一个数,结果仍是等式”是命题吗?如果是,它的题设和结论分别是什么?

2举出一些命题的例子

四。作业

课本p25

教学建议

1、教材分析

(1)知识结构

平行线的性质:

(2)重点、难点分析

本节内容的重点是平行线的性质。教材上明确给出了“两直线平行,同位角相等”推出“两直线平行,内错角相等”的证明过程。而且直接运用了“∵”、“∴”的推理形式,为学生创设了一个学习推理的环境,对逻辑推理能力是一个渗透。因此,这一节课有着承上启下的作用,比较重要。学生对推理证明的过程,开始可能只是模仿,但在逐渐地接触过程中,能最终理解证明的步骤和方法,并能完成有两步推理证明的填空。

本节内容的难点是理解平行线的性质与判定的区别,并能在推理中正确地应用它们。由于学生还没学习过命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,用的时候容易出错。在教学中,可让学生通过应用和讨论体会到,如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果由两直线平行,得出角的关系,就是平行线的性质。

2、教法建议

由上面的重点、难点分析可知,这节课也是对前面所学知识的复习和应用。要有一定的综合性,推理能力也有较大的提高。知识多,也有了一些难度。但考虑到学生刚接触几何,进度不可过快,尽量多创造一些学习、应用定理、公理的机会,帮助学生理解平行线的判定与性质。

(1)讲授新课

首先,提出本节课的研究问题:如果两直线平行,同位角、内错角、同旁内角有什么关系吗?探究实验活动还是从画平行线开始,得出两直线平行,同位角相等后,再推导证明出其它的两个性质。教师可以用“∵”、“∴”的推理证明形式板书证明过程,学生在理解推理证明的过程中,欣赏到数学的严谨的美。

(2)综合应用

理解平行线的判定和性质区别,并能在推理过程中正确地应用它们成为了教学难点.老师可以设计一些有两步推理的证明题,让学生填充理由。在应用知识的过程中,组织学生进行讨论,结合题目的已知和结论,让学生自己总结出判定和性质的区别,只有自己构造起的知识,才能真正地被灵活应用。

(3)适当总结

几何的学习,既可以培养学生的逻辑思维能力,,也可以培养学生分析问题,解决问题的能力。对于好的学生,可以引导他们总结如何学好几何。注意文字语言,图形语言,符号语言间的相互转化。对简单的题目,能做到想得明白,写得清楚,书写逐渐规范。

教学目标:

1.使学生理解平行线的性质,能初步运用平行线的性质进行有关计算。

2.通过本节课的教学,培养学生的概括能力和“观察-猜想-证明”的科学探索方法,培养学生的辩证思维能力和逻辑思维能力。

3.培养学生的主体意识,向学生渗透讨论的数学思想,培养学生思维的灵活性和广阔性。

教学重点:平行线性质的研究和发现过程是本节课的重点。

教学难点:正确区分平行线的性质和判定是本节课的难点。

教学方法:开放式

教学过程:

1.请同学们先复习一下前面所学过的平行线的判定方法,并说出它们的已知和结论分别是什么?

2、把这三句话已知和结论颠倒一下,可得到怎样的语句?它们正确吗?

3、是不是原本正确的话,颠倒一下前后顺序,得到新的一句话,是否一定正确?试举例说明。

如、“若a=b,则a2=b2”是正确的,但“若a2=b2,则a=b”是错误的。又如“对顶角相等”是正确的。但“相等的角是对顶角”则是错误的。因此,原本正确的话将它倒过来说后,它不一定正确,此时它的正确与否要通过证明。

二、新课

1、我们先看刚才得到的第一句话“两直线平行,同位角相等”。先在请同学们画两条平行线,然后画几条直线和平行线相交,用量角器测量一下,它们产生的几组同位角是否相等?

上一节课,我们学习的是“同位角相等,两直线平行”,此时,两直线是否平行是未知的,要我们通过同位角是否相等来判定,即是用来判定两条直线是否平行的,故我们称之为“两直线平行的判定公理”。而这句话,是“两直线平行,同位角相等”是已知“平行”从而得到“同位角相等”,因为平行是作为已知条件,因此,我们把这句话称为“平行线的性质公理”,即:两条平行线被第三条线所截,同位角相等。简单说成:两直线平行,同位角相等。

2、现在我们来用这个性质公理,来证明另两句话的正确性。

想想看,“两直线平行,内错角相等”这句话有哪些已知条件,由哪些图形组成?

已知:如图,直线a∥b

求证:(1)∠1=∠4;(2)∠1+∠2=180°

证明:∵a∥b(已知)

∴∠1=∠3(两直线平行,同位角相等)

又∵∠3=∠4(对顶角相等)

∴∠1=∠4

(2)∵a∥b(已知)

∴∠1=∠3(两直线平行,同位角相等)

又∵∠2+∠3=180°(邻补角的定义)

∴∠1+∠2=180°

思考:如何用(1)来证明(2)?

例1、如图,是梯形有上底的一部分,已经量得∠1=115°,∠d=100°,梯形另外两个角各是多少度?

解:∵梯形上下底互相平行

∴∠a与∠b互补,∠d与∠c互补

∴∠b=180°-115°=65°

∠c-180°-100°=80°

答:梯形的另外两个角分别是65,80°

练习:p791、2、3

小结:平行性质与判定的区别

作业:p879、10

【教学目标】

1、经历平行线的性质:“两直线平行,同位角相等”的发现过程。

2、掌握平行线的性质:“两直线平行,同位角相等”。

3、会用“两直线平行,同位角相等”进行简单的推理和判断,并学会表达。

【教学重点】平行线的性质:“两直线平行,同位角相等”。

【教学难点】例2的推理过程要用到平行线的判定和性质。

【教学预设】

【活动1】复习引入

1、如果两条直线被第三条直线所截,那么符合怎样的条件才能得到两直线平行的结论?(学生口答,教师板书。)

条件结论

同位角相等,两直线平行。

内错角相等,两直线平行。

同旁内角互补,两直线平行。

2、练习:

(1)如图①,a、b、c三点在一条直线上。

如果∠3=∠6,那么∥。()

如果∠6=∠9,那么∥。()

如果∠1+∠2+∠3=180°,那么∥。()

如果∠=∠,那么be∥cd。()

(2)如图②,看图填空:

∵∠1=∠2(已知)

∴∥。()

又∵∠2=∠3(已知)

【活动2】

1、引入新课的课堂练习:

(1)你们练习本上的横线与横线成什么关系?(平行)

(2)请画出其中二条(二条之间可空若干行),分别用a、b表示,a∥b,再画一条c分别与a、b相交。

(3)标出一对同位角,用∠1、∠2表示,并量一下度数。

(4)∠1与∠2有何关系?(∠1=∠2)

在这个练习中,两直线平行是给出的条件,而得到的结论是什么?

学生回答

这就是平行线的一个重要性质:两条平行直线被第三条直线所截,同位角相等。

简单地说成:“两直线平行,同位角相等”。

【活动3】知识应用:

例1、如图,梯子的各条横档互相平行,∠1=1000,求∠2的度数。

此题比较简单,让学生自己分析,个别同学发表自己的分析过程,后学生书写过程。强调过程的书写。

例2、如图,已知∠1=∠2。若直线b⊥m,则直线a⊥m。请说明理由。

这是一道平行线的判定和性质综合的题目,引导学生用逆向推理的方法来分析。

3、课内练习

强调说明过程的书写规范

机动:作业题4

【活动4】小结

请同学们回答平行线的两个性质,指出其中的条件与结论。

【活动5】布置作业

见作业本

【教学反思】

10.3平行线的性质(2)

1、经历平行线的性质:“两直线平行,内错角相等”“两直线平行,同旁内角互补”的发现过程。

2、掌握平行线的两个性质:“两直线平行,内错角相等”“两直线平行,同旁内角互补”。

3、会用平行线的性质进行简单的推理和判断。

【教学重点】平行线的性质。

【教学难点】平行线的性质和判定的综合应用。

【活动1】知识回顾:

1、平行线的判定

2、平行线的性质

【活动2】1.合作学习:

如图,直线ab∥cd,并被直线ef所截。∠2与∠3相等吗?∠3与∠4的和是多少度?

思考下列几个问题:

(1)图中有哪几对角相等?

(2)∠3与∠1有什么关系?∠4与∠2有什么关系?

2.你发现平行线还有哪些性质?

【活动3】平行线的性质:

两条平行线被第三条直线所截,内错角相等。简单地说,两直线平行,内错角相等。

两条平行线被第三条直线所截,同旁内角互补。简单地说,两直线平行,同旁内角互补。

【活动4】知识应用

1、做一做:

如图,ab,cd被ef所截,ab∥cd(填空)

若∠1=120°,则∠2=()

∠3=-∠1=()

2、例3如右下图,已知ab∥cd,ad∥bc。判断∠1与∠2是否相等,并说明理由。

(1)∠1与∠bad是一对什么的角?它们是否相等?为什么?

(2)∠2与∠bad是一对什么的角?它们是否相等?为什么?

(3)那么∠1与∠2是否相等?为什么?

解:∠1=∠2

∵ab∥cd(已知)

∴∠1+∠bad=180°(两直线平行,同旁内角互补)

∵ad∥bc(已知)

∴∠2+∠bad=180°(两直线平行,同旁内角互补)

∴∠1=∠2(同角的补角相等)

讨论:还有其它解法吗?如不用“两直线平行,同旁内角互补”这个性质是否可以解?

3、练一练:(课内练习1、2)

4、例4如右图,已知∠abc+∠c=180°,bd平分∠abc。∠cbd与∠d相等吗?请说明理由。

(1)ab与cd平行吗?为什么?

(2)∠d与∠abd是一对什么的角?它们是否相等?为什么?

(3)∠cbd与∠abd相等吗?为什么?

解:∠d=∠cbd

∵∠abc+∠c=180°(已知)

∴ab∥cd(同旁内角互补,两直线平行)

∴∠d=∠abd(两直线平行,内错角相等)

∵bd平分∠abc(已知)

∴∠cbd=∠abd=∠d

想一想:是否还有其它方法?(用三角形内角和定理等)

5、练一练:

如图,已知∠1=∠2,∠3=65°,求∠4的度数。

【活动5】拓展

1、如图1,已知ad∥bc,∠bad=∠bcd。判断ab与cd是否平行,并说明理由

2、如图2,已知ab∥cd,ae∥df。请说明∠bae=∠cdf

【活动6】知识整理:

1、平行线的性质:

2、思维方法:如不能直接说明其成立,则需说明它们都与第三个量相等。

3、要注意一题多解。

4、到目前为止说明两个角相等有哪些方法?课后归纳。

【活动7】布置作业:见作业本

一、目标

1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质。

2.会用平行线的性质进行推理和计算。

3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力。

4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想。

二、学法引导

1.教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识。

2.学生学法:在的指导下,积极思维,主动发现,认真研究。

三、重点·难点解决办法

(一)重点

平行线的性质公理及平行线性质定理的推导。

(二)难点

平行线性质与判定的区别及推导过程。

(三)解决办法

1.通过创设情境,学生积极思维,解决重点。

2.通过学生自己推理及指导,解决难点。

3.通过学生讨论,归纳小结。

四、课时安排

1课时

五、教具学具准备

投影仪、三角板、自制投影片。

六、师生互动活动设计

1.通过引例创设情境,引入课题。

2.通过指导,学生积极思考,主动学习,练习巩固,完成新授。

3.通过学生讨论,完成课堂小结。

七、步骤

(一)明确目标

掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力。

(二)整体感知

以情境创设导入新课,以引导,学生讨论归纳新知,以变式练习巩固新知。

(三)过程

创设情境,复习导入

师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题(出示投影片1).

1.如图1,

(1)∵(已知),∴().

(2)∵(已知),∴().

(3)∵(已知),∴().

2.如图2,(1)已知,则与有什么关系?为什么?

(2)已知,则与有什么关系?为什么?

图2图3

3.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度?

学生活动:学生口答第1、2题。

师:第3题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质。课题:

[]2.6平行线的性质

探究新知,讲授新课

师:我们都知道平行线的画法,请同学们画出直线的平行线,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?

学生活动:学生在练习本上画图并思考。

学生画图的同时在黑板上画出图形(见图4),当同学们思考时,有意识地重复演示过程。

【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯。

学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等。

提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线,使它截平行线与,得同位角、,利用量角器量一下;与有什么关系?

学生活动:学生按老师的要求画出图形,并进行度量,回答出不论怎样画截线,所得的同位角都相等。

根据学生的回答,肯定结论。

师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等。我们把平行线的这个性质作为公理。

[]两条平行线被第三条直线所截,同位角相等。

简单说成:两直线平行,同位角相等。

【教法说明】在提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的基础上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力。

提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?

学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补。

师:继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下。

学生活动:学生们思考,并相互讨论后,有的同学举手回答。

【教法说明】在前面复习引入的第2题的基础上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也激励了学生的学习兴趣。

根据学生回答,给予肯定或指正的同时.

[]∵(已知),∴(两条直线平行,同位角相等).

∵(对项角相等),∴(等量代换).

师:由此我们又得到了平行线有怎样的性质呢?

学生活动:同学们积极举手回答问题。

根据学生叙述,:

[]两条平行经被第三条直线所截,内错角相等。

简单说成:西直线平行,内错角相等。

师:下面清同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质。请一名同学到黑板上板演,其他同学在练习本上完成。

师生共同订正推导过程和第三条性质,形成正确.

[]∵(已知),∴(两直线平行,同位角相等).

∵(邻补角定义),

∴(等量代换).

即:两条平行线被第三条直线所截,同旁内角互补。

简单说成,两直线平行,同旁内角互补。

师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵(已知见图6),∴(两直线平行,同位角相等).∵(已知),∴(两直线平行,内错角相等).∵(已知),∴.(两直线平行,同旁内角互补)(在三条性质对应位置上。)

尝试反馈,巩固练习

师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢?

学生活动:学生给出答案,并很快地说出理由。练习(出示投影片2):

如图7,已知平行线、被直线所截:

图7

(1)从,可以知道是多少度?为什么?(2)从,可以知道是多少度?为什么?(3)从,可以知道是多少度,为什么?

【教法说明】练习目的是巩固平行线的三条性质。

变式训练,培养能力

完成练习(出示投影片3).

如图8是梯形有上底的一部分,已知量得,,梯形另外两个角各是多少度?

图8

学生活动:在不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程。

【教法说明】学生在阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找和的大小。这里学生能够自己解题,避免包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题。学生板演指正,在几何里我们每一步结论的得出都要有理有据,规范学生的解题思路和格式,培养学生严谨的学习态度,修改学生的板演过程,可形成下面的.

[]解:∵(梯形定义),∴,(两直线平行,同旁内角互补).∴.∴.

变式练习(出示投影片4)

1.如图9,已知直线经过点,,,.

(1)等于多少度?为什么?

(2)等于多少度?为什么?

(3)、各等于多少度?

2.如图10,、、、在一条直线上,.

(1)时,、各等于多少度?为什么?

(2)时,、各等于多少度?为什么?

学生活动:学生独立完成,把理由写成推理格式。

【说明】题目中的为什么,可以用语言叙述,为了培养学生的逻辑推理能力,最好用推理格式说明。另外第2题在求得一个角后,另一个角的解法不惟一。对学生中出现的不同解法给予肯定,若学生未想到用邻补角求解,应启发诱导学生,从而培养学生的解题能力。

(四)总结、扩展

(出示投影片1第1题和投影片5)完成并比较。

如图11,

(1)∵(已知),

∴().

(2)∵(已知),

(3)∵(已知),

学生活动:学生回答上述题目的同时,进行观察比较。

师:它们有什么不同,同学们可以相互讨论一下。

(出示投影6)

学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由已知直线平行,得到角相等或互补的结论是平行线的性质。

【教法说明】通过有形的具体实例,使学生在有充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同。

巩固练习(出示投影片7)

1.如图12,已知是上的一点,是上的一点,,,.(1)和平行吗?为什么?

图12

(2)是多少度?为什么?

学生活动:学生思考、口答。

【教法说明】这个题目是为了巩固学生对平行线性质与判定的联系与区别的掌握。知道什么条件时用判定,什么条件时用性质、真正理解、掌握并应用于解决问题。

八、布置作业

(一)必做题

课本第99~100页a组第11、12题。

(二)选做题

课本第101页b组第2、3题。

作业答案

a组11.(1)两直线平行,内错角相等。

(2)同位角相等,两直线平行。两直线平行,同旁内角互补。

(3)两直线平行,同位角相等。对顶角相等。

12.(1)∵(已知),∴(内错角相等,两直线平行).

(2)∵(已知),∴(两直线平行,同位角相等),(两直线平行,同位角相等).

b组2.∵(已知),∴(两直线平行,同位角相等),(两直线平行,内错角相等).

∵(已知),∴(两直线平行,同位角相等),(同上).又∵(已证),∴.∴.又∵(平角定义),∴.

3.平行线的判定与平行线的性质,它们的题设和结论正好相反。

THE END
1.如何线上兼职一单一结赚佣金?(线上兼职赚佣金实用指南)在数字时代,线上兼职成为越来越多人寻求的方式,通过一单一结模式来赚取额外的佣金。这种兼职方式允许人们在互联网上参与各种任务,获得报酬,而且无需等待很长时间才能得到付款。本文将详细探讨如何在线上兼职中一单一结地赚取佣金,提供实用的指南和技巧。 https://www.jianshu.com/p/c29d1467bd17
2.一单一结的赚钱平台,零投资一天赚1000的软件有哪些?要在一单一结的平台上实现零投资日赚1000元,可以尝试以下几种方法: 1. 多平台操作:不要局限于一个平台,可以同时注册多个平台,增加任务来源和收入渠道。 2. 优化时间管理:合理安排时间,优先处理高佣金的任务,提高单位时间内的收入。 3. 提升技能水平:不断学习和提升自己的技能,比如写作、设计、编程等,这些技能可https://vwjq.com/11206.html
3.线上兼职一单一结(长期能在线上兼职赚钱的平台)现在从事互联网事业的人让大部分人羡慕,足不出户就能通过网络赚钱,在疫情期间也丝毫没有影响到这些人赚钱,其实我们大众也能通过手机上赚钱,小编给大家分享一些线上兼职一单一结的APP,只要不懒能坚持做,以下这些都是能长期做的兼职平台,不影响主业发展,随时随地一部手机就能赚钱,赶紧下载收藏起来,以备不时之需!#http://www.17zhuan.net/special/735.html
4.线上兼职一单一结(推荐2款在线兼职软件app)线上兼职一单一结?现在年轻人生活成本逐渐增高,压力大,都想通过线上做份兼职来多挣一份收入,你要说想通过线上兼职稳定一天赚两三百元,那无疑很难,需要一定技能,而线下兼职可能能达到,但需要大量时间精力,而且是集中时间段,短期来做,有地区限制,适合想在线下做点短工的人。 https://www.youdianhuo.com/fuye/post/1077.html
5.线上兼职一单一结招聘信息兼职猫线上兼职一单一结招聘频道为您提供线上兼职一单一结岗位招聘信息,工资待遇以及岗位要求,帮助求职者更快的找到线上兼职一单一结工作,找兼职找工作就上兼职猫。https://m.jianzhimao.com/sou/xsjzydyj/
6.线上兼职一单一结不需要本金,这6款兼职软件免费赚钱还快很多人学生党、宝妈上班族都喜欢一单一结不需要本金的线上兼职,主要就是因为不花钱纯赚,花钱了那么就是要亏的节奏,基本上做过一些线上兼职的朋友们应该了解的,基本上花几百元去做了,后面基本上都还不了本或者说短期内回不了,基本上这样的兼职没有什么可做的,因为浪费时间。 https://www.49498.cn/sjzq/5961.html
7.中国军事电影的天花板,快来收藏!《三八线上》 1960 年出品 朝鲜战争打了三年以后 美帝国主义不得不坐在了谈判桌上 但敌人是不甘心失败的 经常派特务越境收集我方情报 中国军事电影的最强片单 没电影看的时候 就在这里面选吧 感谢八一电影制片厂 为我们留下的一部部经典作品 以及记录的无数强军光影 https://www.360doc.cn/article/69645535_1109539013.html
8.接任务赚钱一单一结app行业软件快速上线一站式服务APP推广接单软件交易平台快速上线现成案例 所属分类:中国商务服务网/软件开发 接任务赚钱一单一结app行业软件快速上线一站式服务的文档下载:PDFDOCTXT 我们的产品目录 数字藏品 盲盒app开发 任务系统开发 元宇宙开发 APP开发 软件开发 成立日期2019年07月08日 https://zhengzhou.11467.com/info/15432821.htm
9.学生心理降活动总结(通用19篇)本次共印制彩色宣传单5000份,传单的内容包括:“心理咨询对大学生的帮助”、“宁夏师范学院学校心理健康教育资源简介”、“大学生如何提高人际关系能力”。由大学生心理协会的'学生以一个宿舍6份的方式发到每个学生的手中,目的是让更多的学生了解学校的心理健康教育资源,掌握心理健康知识,懂得当遇到心理困惑时到心理咨https://www.oh100.com/a/202212/5742058.html
10.“卧底”瑞幸粉丝群100天后,我发现了它「起死回生」的秘密深入了解以后,我发现,瑞幸从去年暴雷后就开始深耕私域,通过微信社群进行新一轮的扩张,做得还相当不错。 这篇文章,我们就来扒一扒,瑞幸私域运营背后的秘密。 一、线上线下多触点引流 瑞幸的私域做得有多厉害呢? 数据显示,瑞幸做私域以来,社群每天贡献单量 3.5 万多杯,通过群内信息提醒促单 10 万多杯,用户入https://www.niaogebiji.com/article-69527-1.html
11.”年终体检“系列三:体检报告上的专业术语是什么意思?“一等二看没有医学相关知识的人,看体检报告往往会像看“天文数字”一样,对各种专业术语、各种箭头一头雾水。记者了解到,绝大多数医院下设的体检中心,都会为本中心体检者提供免费体检报告解读服务,可带上体检报告线下咨询体检中心医生。 此外,不少医院体检中心还提供线上解读报告,如广东省第二人民医院“叮呗医生”小程序可以线https://www.xxsb.com/content/2023-12/25/content_223382.html
12.pmc年终工作总结(精选13篇)20xx年我部与业务部的沟通有更上一层楼,有了新的变化,我部极力配合业务部的工作,经过良好的沟通,基本上能达成共识,由于下半年公司的组织架构的变动,核算材料、分发生产任务单有业务部管理,我部极力配合,在此期间我部曾多次提出建议,并与之达成共识,各方面也得到了相应的改善。所以交货计划基本达标,完成率在98%,https://www.fwsir.com/Article/html/Article_20230520162531_2867837.html
13.推广活动策划方案(通用18篇)②在各小区楼道内贴上楼层贴,提高影响力,悬挂横幅于各小区内,增强品牌知品度,扩大影响。 ③在现场摆点直销时,不仅发放DM宣传单页,另可附加奉送一系列小礼品扩大宣传的影响力。 ④在小区现场销售过程中,可发动现场的消费者参与,以引起其他消费者对x品牌产品和促销活动的注意,利用他们之间的信任和喜欢“凑热闹”的https://www.unjs.com/huodongfangan/202301/6240738.html
14.电气生产实习报告(精选14篇)当两者接近到适当距离时(一般为0.01~0.04毫米)便产生火花放电,蚀除金属。金属被蚀除后工件与电极丝之间的距离加大,控制系统根据这一距离的大小和预先输入的程序,不断地发出进给信号,使加工过程持续进行电火花线切割加工主要用于模具制造,此外,直接用线切割加工某些零件,省去制造冲压模具的时间,缩短试制周期。https://www.ruiwen.com/shixibaogao/3039256.html
15.答题赢红包!2024年“世界水日”“中国水周”线上活动邀您参与→一、单选题 1.2024年()是第三十二届“世界水日”。 A.3月21日 B.3月22日 C.3月23日 答案:B 2.2024年()是第三十七届“中国水周”。 A.3月15—25日 B.3月20—30日 C.3月22—28日 答案:C 3.我国纪念2024年“世界水日”“中国水周”活动主题为“()”。 http://www.longyan.cn/jeecms/html/rdzytw/20240322/99862.html
16.音乐节活动策划12篇④将请柬送至各院主席手上。 2、经费赞助 大型户外音乐工作室公关部从4月1日开始准备活动赞助。 赞助目标: ①TRUSS桁架、舞台、线阵音箱、LED屏、灯光及舞美 ②横幅三条(晚会现场一条、文科楼门口一条、设点宣传一条) ③晚会节目单制作赞助1000张 https://www.wenshubang.com/cehuashu/3308687.html
17.消息中间件第一讲:RocketMQ从入门到精通在RabbitMQ 中,Exchange 位于生产者和队列之间,生产者并不关心将消息发送给哪个队列,而是将消息发送给 Exchange,由 Exchange 上配置的策略来决定将消息投递到哪些队列中。 RocketMQ 的消息模型 4、RocketMQ 系统架构(重点) RocketMQ是一个统一消息引擎、轻量级数据处理平台 https://developer.aliyun.com/article/1352496