干涉合成孔径雷达(InSAR)技术可获取大范围地表形变信息,在地质灾害监测与防治中发挥着巨大的作用。然而,现有数字地球产品难以支撑海量InSAR点云及形变序列的流畅显示、快速查询与综合解译,不利于InSAR技术的应用与推广。本文在分析海量InSAR点云三维显示难点的基础上,提出InSAR点云数据预处理、存储、浏览和查询等问题的工程解决方案,基于Cesium数字地球开发一套海量InSAR点云在线可视化与解译平台(简称WIMAP),并在两个典型的应用场景下测试平台性能。结果表明,WIMAP平台能够实现上亿InSAR点云及形变序列的流畅三维展示、单点时序查询、形变速率剖面查询、多期形变剖面查询等功能。平台实现了InSAR形变数据的便捷分发,允许用户在线查看海量形变点云,并结合三维地形和光学影像解译InSAR形变,为科研人员和工程技术人员提供实用的InSAR形变结果展示与解译工具。
SyntheticApertureRadarInterferometry(InSAR)isapowerfultoolformonitoringgrounddeformationoverlargeareas
withapplicationsingeologicaldisastermonitoring
inversionofgroundwaterstatus
buildinghealthanalysis
earthquakeparameterextraction
post-disasterrelief
andmore.However
existingdigitalearthplatforms
suchasGoogleEarthandArcGIS
facechallengesinsupportingtheexplorationandqueryingofvastInSARdatasets
includingslowprocessingspeeds
unsupporteddataformats
anddifficultieswithsecondarydevelopment.Thisstudyexaminesthechallengesassociatedwithonlinevisualizationoftime-seriespointcloudsandproposesprinciplesforpre-processing
storage
exploration
andqueryingofsuchdatasets.Challengesincludeslowgraphicsrenderingonwebpages
limitednetworkbandwidththathindersreal-timeupdatesduringexploration
andlargedatasizesthatcanposestoragechallenges.Toovercomethesechallenges
wesuggestseparatingpositionandcolorcinformationfromtemporalinformation
partitioningdatausinganoctreestructure
andusingvariouscompressiontechniques.Basedontheseprinciples
weutilizeCesium.js
aJavaScriptlibrarythatenablesdeveloperstocreate3DglobesandmapsinawebbrowserwithhighperformanceandprecisiontodevelopaplatformforthevisualizationandinterpretationofInSARpointclouds
whichwecallWIMAP.Thisallowsustoeasilycreateinteractivevisualizationsofgeospatialdata.Totesttheplatform
weprocessedtwoSARdatasetscoveringaplainandamountainousarea
respectively
andobtainedcorrespondingtime-seriespointclouds.Wetestedtheperformanceoftheplatformusingthesepointcloudsanddemonstrateditsabilitytorunsmoothlyundersuchconditions.Specifically
onacomputerequippedwithamid-rangegraphicscard
itwasabletomaintainaframerateofover30FPSwhilebrowsingtime-seriespointcloudscontainingtensofmillionspoints.Additionally
comparedtotheoriginalplainbinaryformat
thesizeofbinarydatastoredonservercouldbereducedtoapproximatelyonequarterusingpreprocessingtoolsprovidedbytheplatform.Alldeformationanalysistools
includingsinglepointtime-seriesquery
deformationratealongprofilelinequery
andmulti-temporaldeformationalongprofilelinequery
workproperly.Spatialprofileanalysis
whichincludedspatialinterpolationwithabufferingradiusof200meters
wasperformedontime-seriespointclouddatasetswithover100epochsandtooklessthan20secondstocomplete.ThisperformanceiscomparabletothatoflocallyconductedqueriesbasedonKd-treeonavailablecomputers.TheWIMAPplatformallowsuserstoexploreInSARpointcloudsintheirbrowserandfacilitatesthedistributionofInSARresults.IndividualorganizationsandresearchinstitutionscanuploadtheirprocessedInSARresultstotheplatform'sserver
providinggeoscientificinformationforusersinvariousindustries.Withthevisualizationandinterpretationtoolsbundled
userscananalyzeInSARmulti-temporalobservations
combinedwiththree-dimensionalterrainsandopticalimages
togaininsightsintovariousgeologicalphenomena.Thismayacceleratetheresearchprogressinseveralareas
suchaslandslidestudies
earthquakemonitoring
volcanicdeformationanalysis
andcoastalerosionmonitoring.
InSAR点云处理数据可视化WebGL形变数据
InSARpointcloudprocessingdatavisualizationWebGLdeformationdata
ColletteA.2021.PythonandHDF5:unlockingscientificdata.O'ReillyMedia,Inc
ParisiT.2012.WebGL:UpandRunning.Sebastopo:O'ReillyMedia,Inc
SalomonD.2004.DataCompression:TheCompleteReference.3rded.Heidelberg:Springer
SayoodK.2006.IntroductiontoDataCompression.3rded.Burlington:MorganKaufmann
SchützM.2016.Potree:RenderingLargePointCloudsinWebBrowsers.Wiedeń:TechnischeUniversittWien