虚拟仿真技术是汽车研发、制造、验证测试等环节不可或缺的技术手段,能有效缩短技术和产品开发周期,降低研发成本;随着汽车智能化、网联化趋势的发展,虚拟仿真技术有了更大的发挥空间,比如自动驾驶系统的仿真测试验证;虚拟仿真测试是实现高阶自动驾驶落地应用的关键一环,具备自动驾驶功能的车辆必须经过大量的虚拟仿真测试以及实车路测之后才能商用化;
自动驾驶汽车商用化需经历的三个测试阶段:仿真测试、封闭场地测试、开放道路测试。
自动驾驶仿真测试:主要是以数学建模的方式将自动驾驶的应用场景进行数字化还原,建立尽可能接近真实世界的系统模型,无需实车直接通过软件进行仿真测试便可达到对自动驾驶系统及算法的测试验证目的。
仿真测试包括以下几种类型:模型在环仿真(MIL)—软件在环仿真(SIL)—硬件在环仿真(HIL)—整车在环仿真(VIL)
自动驾驶系统开发V字流程
自动驾驶仿真测试的必要性
实车道路测试面临的问题:
据美国兰德公司研究:一套自动驾驶系统至少需要通过110亿英里的驾驶数据来进行系统和算法的测试验证才能达到量产的条件;因此单纯依靠实车路测极难完成这一目标,并且实车路测还存在以下问题:
仿真测试的优势:
实车测试与仿真测试方案对比
备注:●真实○虚拟◎虚拟或部分真实数据参考:中国汽车工程研究院
三者之间的关系
仿真测试、封闭场地测试、开放道路测试三者之间互相补充,形成测试闭环,共同促进自动驾驶车辆的研发和标准体系建立:
1)仿真测试结果可以在封闭场地和开放道路进行测试验证;
2)通过道路测试得出的危险场景,将会反馈到仿真测试中,便可有针对性的去调整设定场景和参数空间;
3)仿真测试和封闭场地测试的最终结果要进行综合评价,基于评价结果不断地去完善评价准则和测试场景库。
自动驾驶仿真测试的重要构成:场景库、仿真平台、评价体系;其中,场景库是基础,仿真平台是核心,评价体系是关键;三者紧密耦合,相互促进:场景库的建设需要仿真平台和评价体系作为指导,仿真平台的发展进化需要场景库和评价体系作为支撑,而评价体系的建立和完善也需要以现有的场景库和仿真平台作为参考基础;接下来笔者将从场景库、仿真平台、评价体系这三个重要方面依次展开来介绍。
一、场景库
1.1什么是测试场景,包含哪些核心要素?
测试场景要素:测试车辆自身要素以及外部环境要素;外部环境要素又包括:静态环境要素、动态环境要素、交通参与者要素、气象要素等。
测试场景要素划分
场景库定义:满足某种测试需求的一系列自动驾驶测试场景构成的数据库。场景库能够完成从场景数据的管理到场景测试引擎的桥接,实现从场景的自动产生、管理、存储、检索、匹配,到最后注入测试工具。
四种典型测试场景
1)真实数据:即现实世界真实发生的,经过传感器采集到或以其它形式被记录保存下来的真实场景数据,包括自然驾驶数据、交通事故数据、路侧单元监控数据、封闭场地测试数据以及开放道路测试数据等;
2)模拟数据:主要包括驾驶模拟器数据和仿真数据;前者是利用驾驶模拟器进行测试得到的场景要素信息;后者是自动驾驶系统或车辆在虚拟仿真平台上进行测试得到的场景要素信息。
3)专家经验数据:基于专家的仿真测试经验总结归纳出来的场景要素信息,其中标准法规就是专家经验数据的典型代表。
1.3场景库的搭建流程
搭建流程:
自动驾驶测试场景构建流程(图片参考:中汽数据有限公司)
自动驾驶研发测试与场景库的搭建形成闭环:测试场景库的搭建,能有效驱动自动驾驶的研发测试工作,自动驾驶的研发测试反过来也能够为场景库提供反馈意见,丰富场景库。
1.4国内场景库发展现状
现状分析:
国内典型场景库介绍
附表1.中国典型场景库介绍
1)中汽数据有限公司–自建场景库
场景库覆盖范围:自然驾驶场景库(1228种)、功能安全场景库(110种)、V2X场景库、危险事故场景库(206种)、中国特有交通法规场景库(82种)、和预期功能安全场景库(70种)等。
a.自然驾驶场景库
基于中国不同道路拓扑结构、交通基础设施、环境条件、车辆信息的动静态要素特征,从不同维度对数据库进行分类构建和更新迭代:
b.功能安全场景库
功能安全场景库生成过程:
第一步:参考ODD分类的国际标准,对驾驶区域、天气、光线等7大类场景要素以及30类子要素进行排列与重组,进而形成体系化功能场景库;
第三步:在仿真验证软件中,激活ADAS功能,对复现场景下的电子电气失效展开仿真验证,并对产生的风险进行评估,根据公式计算出严重度(S)、暴露度(E)和可控性(C),最后根据ISO26262标准最终确定ASIL风险等级。
c.V2X场景库
2)中国汽车工程研究-自建场景库
场景库生成方案:场景数据采集、场景分类提取、场景数据标注、场景聚类、场景重构、虚拟场景转化等。
中国典型场景库V2.0:
2020年12月,“中国典型场景库”在V2.0版本的基础上升级到V3.0:
3)百度–自建场景库
涵盖场景类型:
典型场景类型数量:200种左右
涵盖:不同的道路类型、障碍物类型、道路规划、红绿灯信号
测试场景基于生成方案的不同又分为:Logsim场景和Worldsim场景,目前总共提供了220个Worldsim场景和17个Logsim场景。
a.Logsim:由路测数据提取的场景,提供复杂多变的障碍物行为和交通状况,场景充满不确定性
b.Worldsim:由人为预设的障碍物行为和交通灯状态构成的场景,场景简单
4)腾讯–自建场景库
路测实采数据积累:截止到2020年,已经积累了超过50万公里交通场景数据。
涵盖场景类型:车辆避撞能力、交通合规性、行为能力、视距影响下交叉路口车辆冲突避免、碰撞预警、紧急制动、危险变道、无信号交叉口通行、行人横穿等方面。
典型场景类型数量:1000种左右
场景生成方案:通过AgentAI能力,可以自由生成各种随机的驾驶场景
二、仿真平台
2.1仿真平台典型架构
仿真平台一般包括仿真框架、物理引擎和图形引擎;其中仿真框架是平台软件平台的核心,支持传感器仿真、车辆动力学仿真、通信仿真、交通环境仿真等;
1)传感器仿真:支持支持摄像头、激光雷达、毫米波雷达以及GPS/IMU等传感器仿真;
2)车辆动力学仿真:基于多体动力学搭建的模型,将包括转向、悬架、制动、I/O硬件接口等在内的多个真实部件进行参数化建模,进而实现车辆模型运动过程中的姿态和运动学仿真模拟;
3)交通场景仿真:包括静态场景还原和动态场景仿真两部分,静态场景还原主要通过高精地图和三维建模技术来实现;
例如可模拟自动驾驶汽车在现实世界中可能遇到的极端情况和危险情况,从模拟暴雨和暴雪等恶劣的天气条件到较弱的光线照明,再到周围车辆的危险操作等;
4)V2X仿真(通信仿真):支持创建真实或虚拟传感器插件,使用户能够创建特殊的V2X传感器;既可以用来测试V2X系统,又可生成用于训练的合成数据;
仿真平台典型架构(图片参考-2019自动驾驶仿真技术蓝皮书)
2.2国内典型自动驾驶仿真平台
附表2.国内典型自动驾驶仿真平台信息梳理
注:√-有此功能×-无此功能—Unknown
1)浙江天行健智能科技–Panosim
平台类型:面向汽车自动驾驶技术与产品研发的一体化仿真与测试平台
平台特点:
2)51WORLD–51Sim-One
平台类型:覆盖自动驾驶全流程的一体化集成的仿真测试平台
3)腾讯–TADSim
平台类型:基于虚幻引擎打造的虚实结合、线上线下一体化的仿真测试平台
4)沛岱(上海)技术有限公司–Pilot-DGaiA
平台类型:基于德国自动驾驶仿真核心技术所研发的仿真测试平台
2.3国外典型仿真测试平台
附表3.国外典型自动驾驶仿真平台信息梳理
1)西门子–PreScan
类型:以物理模型为基础的传统汽车仿真平台
2)MSCSoftware–VTD
类型:传统汽车仿真平台
——提供图形化的交互式路网编辑器RoadNetworkEditor(ROD),在构建路网仿真环境的时候,可以同步生成OpenDrive高精地图
——对于动态场景构建,提供了图形化的交互式场景编辑器ScenarioEditor
3)德国IPG–CarMaker
类型:以传统动力学仿真为基础优势发展起来的自动驾驶仿真平台
——IPGRoad:可以模拟多车道、十字路口等多种形式的道路,并可通过配置GUI生成锥形、圆柱形等形式的路障
——IPGTraffic:提供丰富的交通对象模型,如车辆、行人、路标、交通灯、道路施工建筑等
——IPGDriver:提供可自学习的驾驶员模型
——支持从HEREHDLiveMaps导入地图数据
——支持ROAD5和OpenDrive格式导出地图数据
4)英伟达-DriveConstellation
类型:基于虚幻引擎开发,由两台服务器构成的自动驾驶仿真平台
平台构成:
a.第一台服务器硬件构成:由8个英伟达RTXTuringGPU
作用:运行DRIVESim软件来模拟仿真自动驾驶车辆上的传感器数据(包括摄像头、毫米波雷达、激光雷达、IMU和GNSS)以及驾驶场景数据;
b.第二台服务器硬件构成:自动驾驶车辆目标AIECU
作用:用于处理第一台服务器传输过来的模拟数据,如传感器仿真数据
5)微软–AirSim
类型:建立在虚幻引擎(UnrealEngine)上的无人机及自动驾驶开源仿真平台
6)巴塞罗那自治大学(联合丰田研究院和英特尔实验室)–CARLA
类型:基于虚幻引擎开发,采用服务器和多客户端架构的开源平台
7)LG电子-LGSVLSimulator
类型:基于游戏引擎-Unity研发的自动驾驶开源仿真平台
——高精地图:支持创建、编辑和导入/导出现有3D环境的高清地图
注:高精地图支持的导入/导出格式:
a.支持的导入格式:Apollo5.0高清地图、AutowareVectormap、Lanelet2和OpenDrive1.4