全球首款CRISPR基因编辑疗法获批,这种“基因剪刀“技术是如何诞生的?杜德纳dnarna微生物crispr

“CRISPR最初是一个好奇心驱动的基础研究项目,现在已成为无数研究人员使用的突破性策略,并能够帮助改善人类健康状况。”

——詹妮弗·杜德纳(JenniferA.Doudna)博士

她们的科学发现——CRISPR-Cas9基因编辑技术的确很了不起。这把“基因剪刀”让科学家们能够以前所未有的效率和精度修改任何生物体中的遗传密码(即DNA),为生物学、农业和医学等领域的突破带来了更多的可能性。尤其是在医学领域,基因编辑技术能够精确地“修正”错误的DNA,从而治疗遗传性疾病和其它疾病。

就在半个月前,基于CRISPR-Cas9技术的基因编辑疗法Casgevy在英国了,它是全球首款获批上市的CRISPR基因编辑疗法。Casgevy的上市标志着CRISPR-Cas技术完成了从最初的基础科学发现到临床应用的完整转化,达到了生物医药发展史上的又一里程碑。在这个历史性的时刻,药明康德内容团队将结合公开资料,从该技术的发明者之一杜德纳博士的视角出发,带大家一道回顾CRISPR-Cas9基因编辑技术的发现过程。

师从两位诺贝尔奖得主的幸运女孩

杜德纳的博后经历同样幸运,她进入了科罗拉多大学托马斯·切赫(ThomasR.Cech)博士的实验室做博后。切赫博士那时已是一名诺奖得主,他因“发现了RNA的催化特性”获得了1989年的诺贝尔化学奖。与两位在RNA领域颇有建树的科学家一同工作学习的经历为杜德纳培养了良好的科学素养,同时也为她日后专攻RNA生物学打下了坚实的基础。

迷上奇妙的细菌“免疫系统”

2002年,杜德纳受聘在加州大学伯克利分校担任生物化学和分子生物学教授。最开始,杜德纳的目标是推导出RNA的三维结构。但在研究某些小RNA如何能控制遗传信息的问题时,她开始对一种从细菌中发现的“免疫系统”产生了兴趣。

上个世纪90年代左右,科学家们从古细菌的基因组里发现了许多奇怪的“回文”片段。这些片段长30个碱基,而且会不断重复。在两段重复之间,有长约36个碱基的间隔。对于这种具有规律性的重复,科学家们后来给它起了一个拗口的名字“常间回文重复序列簇集”(ClusteredRegularlyInter-SpacedPalindromicRepeats),也就是我们现在所熟知的那个简称——CRISPR。

一开始,科学家们并不知道这些CRISPR序列到底有什么作用,但随着众多科学家不断发现重要线索,对CRISPR序列作用的猜想开始逐渐变得完整。首先是西班牙的微生物学家弗朗西斯科·莫伊卡(FranciscoMojica)教授做出的重要发现。

莫伊卡教授的研究结果表明,CRISPR序列能让细菌记住入侵的噬菌体(一种能感染细菌的病毒)的“模样”,从而使细菌能够抵御这种病毒的再次感染。这与人类的免疫系统何其相似!在人体里,免疫系统会记住过去遇到过的病原体,等到病原体再次入侵时,免疫系统就会迅速识别并对其发起攻击。但细菌是一种单细胞生物,它如何能在1个细胞内复制人类这套复杂免疫系统的作用呢?这个难题曾让众多科学家百思不得其解,却也激发起了更多人的挑战欲。

随后,一些科学家在莫伊卡教授的基础上对CRISPR序列的作用做了进一步的推测,其中也包括杜德纳的同事。将所有科学家们发现的线索进行整合后他们认为,CRISPR是一种起源于入侵病毒的RNA序列。在病毒感染细菌后,细菌会切割病毒的基因组整合到自己的基因组中,从而“记住”病毒,等类似的病毒再次入侵,带有这些病毒DNA片段的RNA拷贝(就好比病毒的“通缉海报”)的酶会与这些入侵者进行比对,如果新入侵的病毒DNA与”通缉海报“对上了,就会触发切割病毒DNA的指令,从而杀死病毒。还有一些科学家认为,一种名为Cas9的蛋白很可能就是病毒DNA的切割器,但当时还没有人能证明这一点。

2011年,一名法国微生物学家伊曼纽尔·沙彭蒂埃博士发表在《自然》杂志上的一篇论文引起了她的注意。论文中描述了一种在其它CRISPR系统中未曾发现过的特殊RNA——tracrRNA,并揭示了这种RNA究竟是如何与Cas9蛋白一起生成病毒的“通缉海报”的。那时的杜德纳并没有想到,不久后她就会与沙彭蒂埃博士结识,她们革命性的发现将开创基因组学的新时代。

接力式工作,“基因剪刀”诞生

2011年春天,身为微生物学家的沙彭蒂埃博士理所当然地受邀参加了美国微生物学会主办的一场会议。杜德纳的研究原本与微生物关系不大,但由于会议上有一场关于CRISPR的报告,在该领域已有一定成果的杜德纳也受到了邀请。

幸运女神似乎十分眷顾杜德纳,在朋友的引荐下,她见到了《自然》杂志上那篇有关CRISPR系统作用机制的论文的作者——一位个头娇小、外表时尚且魅力十足的法国女科学家。沙彭蒂埃博士对杜德纳的初见印象也很好,俩人一见如故,在会后散步的途中就迅速达成了合作破解CRISPR系统机制之谜的意向。

她们的研究表明,Cas9蛋白同时受tracrRNA和与病毒序列匹配的CRISPRRNA(crRNA)的引导,并能利用它们来寻找和破坏匹配的病毒DNA。更重要的是,她们还成功将tracrRNA和crRNA整合成了1个RNA嵌合体,这种RNA嵌合体同样可以让Cas9蛋白指哪儿打哪儿,精确定位并剪切任何物种中的任何基因。也就是说,她们开发的这种CRISPR-Cas9基因编辑系统将成为一种能够编辑植物或动物基因组(包括人类基因)的强大工具,使高效、精准地删除或添加特定的DNA链成为可能!“基因剪刀”就此诞生了。

CRISPR-Cas基因编辑技术的后续发展

自2012年杜德纳博士和沙彭蒂埃博士首次发表具有里程碑意义的论文以来,科学家们对CRISPR基因编辑技术进行了大量的优化与改造。一方面,现在的CRISPR基因编辑技术可以变得更精准,带来更少的脱靶效应(指修改了不应修改的基因);另一方面,CRISPR系统也已经超越了DNA,能够对RNA进行有效编辑。

此外,初代的CRISPR技术涉及DNA双链的断裂,会引起潜在的风险。如今,科学家们基于CRISPR体系,已经开发出了“单碱基”基因编辑系统,能够对基因进行“微调”。如果说以前的基因编辑,是把书的一页纸撕下,再粘上一页新的纸的话,这种“单碱基”基因编辑系统,就好比把书页上的错别字给单独修改,有着更高的精度。

现在,CRISPR基因编辑技术几乎已被应用到生物医学领域的各个角落。尤其是在治疗遗传疾病、传染病和癌症方面,该技术使科学家们能够设计模仿人类疾病的实验动物,以了解遗传缺陷致病的原因,同时测试通过精确改变DNA以纠正遗传缺陷的治疗方法。

截至目前,除了刚刚获批的Casgevy,全球还有十余款CRISPR基因编辑疗法已经进入临床试验阶段(不含研究者发起的临床研究),其中包含了多款中国公司开发的产品。从疾病领域来看,这些疗法的应用范围正在从治疗遗传性疾病扩展到慢性疾病,如心血管疾病、HIV感染等,并有望在将来展现出更广泛的应用前景。对于该领域的繁荣景象,杜德纳博士表示:“这十分令人兴奋!虽然编辑基因组的能力是一种强大的工具,但我认为我们当中没有人能想象该领域会发展得如此迅速。”

参考资料(可上下滑动查看)

[5]EricS.Lander,(2016),TheHeroesofCRISPR,Cell,DOI:10.1016/j.cell.2015.12.041

[6]YoshizumiIshinoetal.,(1987),NucleotideSequenceoftheiapGene,ResponsibleforAlkalinePhosphataseIsozymeConversioninEscherichiacoli,andIdentificationoftheGeneProduct,JournalofBacteriology,DOI:10.1128/jb.169.12.5429-5433.1987

[7]MartinJineketal.,(2012),AProgrammableDual-RNA–GuidedDNAEndonucleaseinAdaptiveBacterialImmunity,Science,DOI:10.1126/science.1225829

[9]LeCongetal.,(2013),MultiplexGenomeEngineeringUsingCRISPR/CasSystems,Science,DOI:10.1126/science.1231143

THE END
1.theuniverseofCRISPRCassequencesCRISPR-Cas序列的建模。 CRISPR相关蛋白语言模型 Cas9蛋白语言模型 指导RNA设计模型 基因编辑的产生 蛋白质生成受限。 用于表征的蛋白质的选择 sgRNA的设计 用于基础编辑的deaminases的设计 基因编辑器的特性 原文: Design of highly functional genome editors by modeling the universe of CRISPR-Cas sequences | bioRhttps://blog.csdn.net/weixin_46120256/article/details/138635902
2.研究人员建立蛋白工程化改造新方法和基于Cas12i的基因编辑新工具CRISPR-Cas基因组编辑技术在基因治疗、农作物经济性状改良及基础研究等领域均有多样化的应用,引领生物技术与应用的快速发展。自然界中广泛存在的天然CRISPR-Cas系统为新型基因编辑工具研发提供了丰富资源。然而,自然界微生物中发现的大多数Cas工具蛋白在哺乳动物细胞中的编辑效率较低,这限制了它们的应用,尤其是在生物https://baijiahao.baidu.com/s?id=1734341538486314607&wfr=spider&for=pc
3.CIDPCRISPRsgRNA设计模块CRISPR的重要性和应用前景,不需要再多罗嗦了。在CRISPR整个系统中,sgRNA是引导切割酶到达基因组指定位置的中间媒介,就是它负责识别目的基因进而发挥CRISPR切割等作用的。因而,sgRNA的设计是应用CRISPR系统的前提和关键。我整理了目前所能找到的26款sgRNA设计软件,其中有22款软件是需要用户选择背景数据集(即背景物种,通常https://www.jianshu.com/p/202f198fb188
4.CRISPRoffinder:aCRISPRguideRNAdesignandoffHowever, most of these tools can only design sgRNAs for the CRISPR/Cas system. In this study, a user-friendly standalone program named “CRISPR-offinder” was developed to provide researchers a tool for quick design of sgRNAs with minimal off-target effects for different CRISPR systems, https://www.ijbs.com/v13p1470.htm
5.CRISPRGuideDesignToolsandAlgorithmSTEMCELLTechnologiesThe CRISPR Guide Design Tool uses best practices and the latest computational tools to deliver the optimal CRISPR RNA (crRNA) or single guide RNA (sgRNA) sequence for every gene in the human and mouse genomes. Access the CRISPR Design Tools https://www.stemcell.com/crispr-guide-design-algorithm
6.CRISPRgRNADesigntoolCRISPR gRNA Design tool lets you design gRNA(s) to efficiently engineer your target and minimize off-target effects using ATUM Scoring Algorithms.https://www.atum.bio/eCommerce/cas9/input
7.CRISPRDesign custom gRNA CRISPR-Cas9 gRNA checker Species Input format Paste/Type input Upload file Enter up to 99 FASTA Sequences. Please enter sequences in standard FASTA formatting. This field is required. IDT RUO products are manufactured in accordance with ISO 9001 and are intended for research https://www.idtdna.com/site/order/designtool/index/CRISPR_SEQUENCE
8.pfcellsCRISPR Design Tool World’s Fastest & Easiest CRISPR Gene Knockout Design Tool Launch Design Tool Bioinformatics Tools CRISPR Design Tool OverviewBenefitsDataLaunch Overview The Best CRISPR Design Tool for Knockouts. Our powerful CRISPR software simplifies gRNA design. Choose from over 120,000 genomes http://www.synthego.com/products/bioinformatics/crispr-design-tool
9.engineeringusinganorthogonaltriwe followed the previously developed HI-CRISPR design20, where the homology donor sequences were integrated into the gRNA expression cassette. We found that the stable maintenance of the homology donor resulted in a further increase in CRISPRd efficiency: from 80% with Sg10 (Table1) to ~?98https://www.nature.com/articles/s41467-017-01695-x
10.CRISPRCRISPR-Cas9 sgRNA design and construction Single guided RNAs (sgRNA) targeting exons 29–30 of ITGA2 were designed using the web tool of UCSC Genome browser (https://genome.ucsc.edu/). The selected gRNAs were fulfilled the requirement as MIT guide specificity >60, high predicted cleavage https://bio-protocol.org/mv2/prep600
11.GitHubBase functions and classes for CRISPR gRNA design. Contribute to crisprVerse/crisprBase development by creating an account on GitHub.https://github.com/crisprVerse/crisprBase
12.EE-CRISP Design of CRISPR constructs Check out our new CRISPR Library Designer (CLD): batch design of sgRNA libraries Download the dockerized version now atCLD on Github 1. Select organism: [HELP] 2. Select target region by gene symbol or sequence: http://www.e-crisp.org/
13.CRISPRgRNA(guideRNA)DesignToolforEukaryoticPathogensbatch mode available here Gene tagging batch mode available here(?) Our CRISPR/Cas gRNA design tool has a new look!! Job Name: RNA guided nuclease selection:(?) SpCas9: 20nt gRNA, NGG PAM on 3' endSaCas9: 21nt gRNA, NNGRRT PAM on 3' endAsCpf1: 20nt gRNA, TTTN PAM on 5' endhttp://grna.ctegd.uga.edu/
14.DECKO:Singleoligo,dualDual excision CRISPR knockout design CRISPR can be used to delete genomic sequences, by cutting genomic DNA at two sites and relying on non-homologous end-joining (NHEJ) mechanism to repair the break (Fig. 1a). gRNAs are introduced to cells by a plasmid vector, either through transfection https://www.biomedcentral.com/1471-2164/16/846
15.Addgene:CRISPRReferencesandInformationIn collaboration with the labs who have depositedCRISPR plasmids, we've created a series of links and guides to help you use CRISPR in your lab. Learn More Guide to CRISPR technology Addgene Blog Posts How to Design Your gRNA for CRISPR Genome Editing: John Doench from the Broad Institute http://www.addgene.org/crispr/reference/
16.CRISPR/Cas9系统质粒载体列表262210 pnos-Fok1:dCas9-nos Fok1-dCas9 Insect Expression nanos Bullock CRISPRflydesign(unpublished) 62211 pAct-Fok1:dCas9 Fok1-dCas9 Insect Expression act5C Bullock CRISPRflydesign(unpublished) Purify A catalytically inactive Cas9 (dCas9) fused to an epitope tag(s) can be used to purify genhttp://www.biovector.net/product/133373.html
17.CRISPRdirect2016-12-14 CRISPRdirect shows restriction enzyme cutting sites - Sample 2016-09-09 Added 10 species - List 2016-08-30 Added Human Japanese Reference Genome JRGv1. 2016-06-14 Added 10 species - List 2015-10-05 CRISPRdirect supports 200+ species - List of species 2015-01-13 HTTPShttp://crispr.dbcls.jp/
18.OntargetandoffThe crisprDesign (GitHub link) package provides user-friendly functionalities to extract and score those sequences automatically via the addOnTargetScores function.4 On-targeting efficiency scores Predicting on-target cutting efficiency is an extensive area of research, and we try to provide in crisprhttp://bioconductor.org/packages/devel/bioc/vignettes/crisprScore/inst/doc/crisprScore.html
19.ECRISP:DesignofcustomgRNAconstructsBioinformatics methods can be used to find suitable target sites for the DSB in a systematic manner. We developed E-CRISP to design CRISPR constructs and provide the possibility to alter various design parameters systematically. A fast nucleotide indexing approach and the application of a binary intehttps://thenode.biologists.com/e-crisp-design-of-custom-grna-constructs/research/
20.SequencedeterminantsofimprovedCRISPRsgRNAdesigndifferent from that for CRISPR/Cas9 knockout and propose a new model for predicting sgRNA efficiency in CRISPRi/a experiments. These results facilitate the genome-wide design of improved sgRNA for both knockout and CRISPRi/a studies. Footnoteshttp://doi.org/10.1101/gr.191452.115
21.CRISPR其脱靶评分公式与上述 2.1.5 Cas-OFFinder “CRISPR Design” 软件相同,但仅针对植物进行 该软件[30] 仅可评估 sgRNA 的脱靶效应(http:// sgRNA 设计。最大特色是搜寻sgRNA 靶标位点中是 否含限制性内切酶识别序列,以方便采用酶切法检 /cas-offinder/) ,由韩国首尔国立大 测基因组切割效率。 学(Seoul https://max.book118.com/html/2017/0920/134497738.shtm
22.CloudBenchling is a cloud-based platform for biotechnology research and development and the only biology-first platform for scientific data, collaboration, and insights.https://www.benchling.com/
23.CRISPRVisit the old version ofCRISPR-P Reference 1. Yang Lei, Li Lu, Hai-Yang Liu, Sen L, Feng Xing, Ling-Ling Chen*. CRISPR-P: A web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant, 2014, 7(9): 1494-1496.doi: 10.1093/mp/ssu044. http://crispr.hzau.edu.cn/
24.CRISPRCas9mediatedLAG3disruptioninCARWe obtained the first exon sequence ofLAG-3from NCBI and used the CRISPR Design Tool (http://crispr.mit.edu) to design sgRNAs. Oligonucleotides containing T7 promoter and 20 bp targeting sequences were synthesized as forward primer (Supplementary Table S1). T7-sgRNA PCR product was amplifiedhttps://journal.hep.com.cn/fmd/EN/10.1007/s11684-017-0543-6
25.CRISPRGPT:AnLLMAgentforAutomatedDesignofGeneAfter completing design tasks, CRISPR-GPT offers selected protocols based on the interaction history, including CRISPR system selection and delivery methods (See example in Figure 5 General Task 5). Finally, for the validation task, CRISPR-GPT utilizes external APIs, like Primer3, to assist usershttp://arxiv.org/html/2404.18021v1
26.CRISPRGuideRNADesign:MethodsandProtocolsSpringerLinkThis detailed volume focuses on the CRISPR-associated guide RNA and how it can be designed, modified, and validated for a broad repertoire of purposes. Beginning with a section on computational design of target-specific guide RNAs, the book continues by covering chemical modifications to alter guidhttps://www.springer.com/us/book/9781071606865
27.CRISPRHere we describe a web tool called CRISPR-ERA for automated genome wide sgRNA design. CRISPR-ERA can provide different sgRNA searching approaches for genome editing, such as Cas9 nuclease. In addition, CRISPR-ERA also generate sgRNAs for gene activation or repression using our large-scale databashttp://crispr-era.stanford.edu/
28.SureDesign,用于NGSCGHCRISPRFISH的定制设计安捷伦Agilent SureDesign 为 NGS、CGH、CRISPR 和 FISH 创建定制设计。对于 NGS,SureDesign 支持定制 SureSelect 和 HaloPlex 靶向序列捕获文库设计。对于 CGH,SureDesign 支持用于 CGH、ChIP-on-chip 和 DNA 甲基化的定制微阵列芯片设计。https://www.agilent.com/zh-cn/product/next-generation-sequencing/ngs-data-analysis-interpretation/suredesign-4301564
29.CRISPR/Cas9植物基因敲除试剂盒CRISPR Design:http://cbi.hzau.edu.cn/cgi-bin/CRISPR (2)选取 atttttcagGCTCTACCTAACCAGCAAACCGTAGATTATCCCAGCTTCAAGCTTGTCATTGTTGGTGATGGAGGCACAGgtacggt (3)输入序列信息(以拟南AtRAN1基因为例) (4)点submit,出现右侧结果; (5)根据左边不同Guide序列score的高低选取合适的Guide序列,score的高低并不代表敲https://www.biomart.cn/infosupply/31603201.htm
30.FrontiersCRISPRGeneTherapy:Applications,Limitations(31,57), CRISPR-design, CasOFFinder, and others (31). However, many of these tools are designed based on computational algorithms with varying parameters or rely on phenotypic screens that may be specific to cell types and genomes, generating appreciable noise and lack of generalizability acrosshttps://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2020.01387/full
31.anaccuratecelllineageusingCRISPRrecorders?eLifeComputer simulations reveal the potential and limitations of recently proposed CRISPR-based cell lineage recorders, and suggest how the recorders' design can be optimised to yield more accurate cell lineage trees.http://elifesciences.org/articles/40292