以太网是什么数据类型

以太网(Ethernet)是一种计算机局域网组网技术。IEEE制定的IEEE802.3标准给出了以太网的技术标准。它规定了包括物理层的连线、电信号和介质访问层协议的内容。以太网是当前应用最普遍的局域网技术。它很大程度上取代了其他局域网标准,如令牌环网(tokenring)、FDDI和ARCNET。以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了最大程度的减少冲突,最大程度的提高网络速度和使用效率,使用交换机(Switchhub)来进行网络连接和组织,这样,以太网的拓扑结构就成了星型,但在逻辑上,以太网仍然使用总线型拓扑和CSMA/CD(CarrierSenseMultipleAccess/CollisionDetect即带冲突检测的载波监听多路访问)的总线争用技术。

以太网(Ethernet)指的是由Xerox公司创建并由Xerox、Intel和DEC公司联合开发的基带局域网规范,是当今现有局域网采用的最通用的通信协议标准。以太网络使用CSMA/CD(载波监听多路访问及冲突检测)技术,并以10M/S的速率运行在多种类型的电缆上。以太网与IEEE802·3系列标准相类似。

以太网(EtherNet)

IEEE802.3标准

IEEE802.3规定了包括物理层的连线、电信号和介质访问层协议的内容。以太网是当前应用最普遍的局域网技术,它很大程度上取代了其他局域网标准。如令牌环、FDDI和ARCNET。历经100M以太网在上世纪末的飞速发展后,目前千兆以太网甚至10G以太网正在国际组织和领导企业的推动下不断拓展应用范围。

常见的802.3应用为:

10M:10base-T(铜线UTP模式)

100M:100base-TX(铜线UTP模式)

100base-FX(光纤线)

1000M:1000base-T(铜线UTP模式)

标准以太网

·1Base-5使用双绞线电缆,最大网段长度为500m,传输速度为1Mbps;

·10Broad-36使用同轴电缆(RG-59/UCATV),网络的最大跨度为3600m,网段长度最大为1800m,是一种宽带传输方式;

·10Base-F使用光纤传输介质,传输速率为10Mbps。

快速以太网

·100BASE-TX:是一种使用5类数据级无屏蔽双绞线或屏蔽双绞线的快速以太网技术。它使用两对双绞线,一对用于发送,一对用于接收数据。在传输中使用4B/5B编码方式,信号频率为125MHz。符合EIA586的5类布线标准和IBM的SPT1类布线标准。使用同10BASE-T相同的RJ-45连接器。它的最大网段长度为100米。它支持全双工的数据传输。

千兆以太网

为了能够侦测到64Bytes资料框的碰撞,千兆以太网(GigabitEthernet)所支持的距离更短。GigabitEthernet支持的网络类型,如下表所示:

传输介质距离

1000Base-CXCopperSTP25m

1000Base-TCopperCat5UTP100m

1000Base-SXMulti-modeFiber500m

1000Base-LXSingle-modeFiber3000m

千兆以太网技术有两个标准:IEEE802.3z和IEEE802.3ab。IEEE802.3z制定了光纤和短程铜线连接方案的标准。IEEE802.3ab制定了五类双绞线上较长距离连接方案的标准。

⒈IEEE802.3z

·1000Base-SX只支持多模光纤,可以采用直径为62.5um或50um的多模光纤,工作波长为770-860nm,传输距离为220-550m。

·1000Base-LX单模光纤:可以支持直径为9um或10um的单模光纤,工作波长范围为1270-1355nm,传输距离为5km左右。

·1000Base-CX采用150欧屏蔽双绞线(STP),传输距离为25m。

⒉IEEE802.3ab

IEEE802.3ab工作组负责制定基于UTP的半双工链路的千兆以太网标准,产生IEEE802.3ab标准及协议。IEEE802.3ab定义基于5类UTP的1000Base-T标准,其目的是在5类UTP上以1000Mbit/s速率传输100m。IEEE802.3ab标准的意义主要有两点:

⑴保护用户在5类UTP布线系统上的投资。

⑵1000Base-T是100Base-T自然扩展,与10Base-T、100Base-T完全兼容。不过,在5类UTP上达到1000Mbit/s的传输速率需要解决5类UTP的串扰和衰减问题,因此,使IEEE802.3ab工作组的开发任务要比IEEE802.3z复杂些。

四、万兆以太网

万兆以太网规范包含在IEEE802.3标准的补充标准IEEE802.3ae中,它扩展了IEEE802.3协议和MAC规范,使其支持10Gb/s的传输速率。除此之外,通过WAN界面子层(WIS:WANinterfacesublayer),10千兆位以太网也能被调整为较低的传输速率,如9.584640Gb/s(OC-192),这就允许10千兆位以太网设备与同步光纤网络(SONET)STS-192c传输格式相兼容。

10GBASE-SR主要支持“暗光纤”(darkfiber),暗光纤是指没有光传播并且不与任何设备连接的光纤。

10GBASE-SW主要用于连接SONET设备,它应用于远程数据通信。

10GBASE-LW主要用来连接SONET设备时,

10GBASE-LR则用来支持“暗光纤”(darkfiber)。

·10GBASE-ER和10GBASE-EW主要支持超长波(1550nm)单模光纤(SMF),光纤距离为2m到40km(约131233英尺)。

10GBASE-EW主要用来连接SONET设备,

10GBASE-ER则用来支持“暗光纤”(darkfiber)。

·10GBASE-LX4采用波分复用技术,在单对光缆上以四倍光波长发送信号。系统运行在1310nm的多模或单模暗光纤方式下。该系统的设计目标是针对于2m到300m的多模光纤模式或2m到10km的单模光纤模式。

△以太网的连接

梅特卡夫曾经开玩笑说,JerrySaltzer为3Com的成功作出了贡献。Saltzer在一篇与他人合著的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。受到此结论的影响,很多电脑厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3Com才有机会从销售以太网网卡大赚。这种情况也导致了另一种说法“以太网不适合在理论中研究,只适合在实际中应用”。也许只是句玩笑话,但这说明了这样一个技术观点:通常情况下,网络中实际的数据流特性与人们在局域网普及之前的估计不同,而正是因为以太网简单的结构才使局域网得以普及。梅特卡夫和Saltzer曾经在麻省理工学院MAC项目(ProjectMAC)的同一层楼里工作,当时他正在做自己的哈佛大学毕业论文,在此期间奠定了以太网技术的理论基础。

它不是一种具体的网络,是一种技术规范。

该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。以太网在互联设备之间以10~100Mbps的速率传送信息包,双绞线电缆10BaseT以太网由于其低成本、高可靠性以及10Mbps的速率而成为应用最为广泛的以太网技术。直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性最好。

注意区分双绞线中的直通线和交叉线两种连线方法.

以下连接应使用直通电缆:

交换机到路由器以太网端口

计算机到交换机

计算机到集线器

交叉电缆用于直接连接LAN中的下列设备:

交换机到交换机

交换机到集线器

集线器到集线器

路由器到路由器的以太网端口连接

计算机到计算机

计算机到路由器的以太网端口

带冲突检测的载波侦听多路访问(CSMA/CD)技术规定了多台电脑共享一个通道的方法。这项技术最早出现在1960年代由夏威夷大学开发的ALOHAnet,它使用无线电波为载体。这个方法要比令牌环网或者主控制网要简单。当某台电脑要发送信息时,必须遵守以下规则:

[3-5]

以太网卡可以工作在两种模式下:半双工和全双工。

以太网的工作过程如下:

当以太网中的一台主机要传输数据时,它将按如下步骤进行:

1、监听信道上是否有信号在传输。如果有的话,表明信道处于忙状态,就继续监听,直到信道空闲为止。

2、若没有监听到任何信号,就传输数据

注意:每台计算机一次只允许发送一个包,一个拥塞序列,以警告所有的节点)

以太网帧的概述:

冲突域:在同一个冲突域中的每一个节点都能收到所有被发送的帧。

影响冲突产生的因素:冲突是影响以太网性能的重要因素,由于冲突的存在使得传统的以太网在负载超过40%时,效率将明显下降。产生冲突的原因有很多,如同一冲突域中节点的数量越多,产生冲突的可能性就越大。此外,诸如数据分组的长度(以太网的最大帧长度为1518字节)、网络的直径等因素也会影响冲突的产生。因此,当以太网的规模增大时,就必须采取措施来控制冲突的扩散。通常的办法是使用网桥和交换机将网络分段,将一个大的冲突域划分为若干小冲突域。

广播域:网络中能接收任何一设备发出的广播帧的所有设备的集合。

广播和广播域的区别:广播网络指网络中所有的节点都可以收到传输的数据帧,不管该帧是否是发给这些节点。非目的节点的主机虽然收到该数据帧但不做处理。

共享式以太网的典型代表是使用10Base2/10Base5的总线型网络和以集线器(集线器)为核心的星型网络。在使用集线器的以太网中,集线器将很多以太网设备集中到一台中心设备上,这些设备都连接到集线器中的同一物理总线结构中。从本质上讲,以集线器为核心的以太网同原先的总线型以太网无根本区别。

集线器的工作原理:

集线器的工作特点:

集线器同中继器一样都是工作在物理层的网络设备。

共享式以太网存在的弊端:由于所有的节点都接在同一冲突域中,不管一个帧从哪里来或到哪里去,所有的节点都能接受到这个帧。随着节点的增加,大量的冲突将导致网络性能急剧下降。而且集线器同时只能传输一个数据帧,这意味着集线器所有端口都要共享同一带宽。

交换式结构:

为什么要用交换式网络替代共享式网络:

·减少冲突:交换机将冲突隔绝在每一个端口(每个端口都是一个冲突域),避免了冲突的扩散。

·提升带宽:接入交换机的每个节点都可以使用全部的带宽,而不是各个节点共享带宽。

交换机的工作原理:

·交换机根据收到数据帧中的源MAC地址建立该地址同交换机端口的映射,并将其写入MAC地址表中。

·交换机将数据帧中的目的MAC地址同已建立的MAC地址表进行比较,以决定由哪个端口进行转发。

·如数据帧中的目的MAC地址不在MAC地址表中,则向所有端口转发。这一过程称之为泛洪(flood)。

交换机的三个主要功能:

·转发/过滤:当一个数据帧的目的地址在MAC地址表中有映射时,它被转发到连接目的节点的端口而不是所有端口(如该数据帧为广播/组播帧则转发至所有端口)。

交换机的工作特性:

·交换机所连接的设备仍然在同一个广播域内,也就是说,交换机不隔绝广播(唯一的例外是在配有VLAN的环境中)。

交换机处理帧有不同的操作模式:

存储转发:交换机在转发之前必须接收整个帧,并进行检错,如无错误再将这一帧发向目的地址。帧通过交换机的转发时延随帧长度的不同而变化。

直通式:交换机只要检查到帧头中所包含的目的地址就立即转发该帧,而无需等待帧全部的被接收,也不进行错误校验。由于以太网帧头的长度总是固定的,因此帧通过交换机的转发时延也保持不变。

注意:

直通式的转发速度大大快于存储转发模式,但可靠性要差一些,因为可能转发冲突帧或带CRC错误的帧。

消除回路:

·广播风暴

·同一帧的多份拷贝

·不稳定的MAC地址表

因此,在交换网络中必须有一个机制来阻止回路,而生成树协议(SpanningTreeProtocol)的作用正在于此。

生成树的工作原理:

·通过比较网桥优先级选取根网桥(给定广播域内只有一个根网桥)。

·其余的非根网桥只有一个通向根交换机的端口称为根端口。

·根交换机所有的连接端口均为转发端口。

注意:生成树协议在交换机上一般是默认开启的,不经人工干预即可正常工作。但这种自动生成的方案可能导致数据传输的路径并非最优化。因此,可以通过人工设置网桥优先级的方法影响生成树的生成结果。

生成树的状态:

阻塞:所有端口以阻塞状态启动以防止回路。由生成树确定哪个端口转换到转发状态,处于阻塞状态的端口不转发数据但可接受BPDU。

监听:不转发,检测BPDU,(临时状态)。

学习:不转发,学习MAC地址表(临时状态)。

转发:端口能转送和接受数据。

生成树的重计算:

当网络的拓扑结构发生改变时,生成树协议重新计算,以生成新的生成树结构。当所有交换机的端口状态变为转发或阻塞时,意味着重新计算完毕。这种状态称为会聚(Convergence)。

网桥概述:

透明网桥:无需改动设备的软硬件配置,即可完成LAN互连的网桥。交换机可看做多端口透明网桥。

什么是路由器:

路由器是使用一种或者更多度量因素的网络设备,它决定网络通信能够通过的最佳路径。路由器依据网络层信息将数据包从一个网络前向转发到另一个网络。

路由器的功能:

·隔绝广播,划分广播域

·通过路由选择算法决定最优路径

·转发基于三层目的地址的数据包

·其他功能

网桥/交换机的本质和功能是通过将网络分割成多个冲突域提供增强的网络服务,然而网桥/交换机仍是一个广播域,一个广播数据包可被网桥/交换机转发至全网。虽然OSI模型的第三层的路由器提供了广播域分段,但交换机也提供了一种称为VLAN的广播域分段方法。

什么是VLAN:

一个VLAN=一个广播域=逻辑网段

VLAN的优点和安装特性:

VLAN的优点:

·安全性。一个VLAN里的广播帧不会扩散到其他VLAN中。

·网络分段。将物理网段按需要划分成几个逻辑网段

·灵活性。可将交换端口和连接用户逻辑的分成利益团体,例如以同一部门的工作人员,项目小组等多种用户组来分段。

典型VLAN的安装特性:

·每一个逻辑网段像一个独立物理网段

·VLAN能跨越多个交换机

·由主干(Trunk)为多个VLAN运载通信量

VLAN如何操作:

·配置在交换机上的每一个VLAN都能执行地址学习、转发/过滤和消除回路机制,就像一个独立的物理网桥一样。VLAN可能包括几个端口

·交换机通过将数据转发到与发起端口同一VLAN的目的端口实现VLAN。

·通常一个端口只运载它所属VLAN的通信量。

VLAN的成员模式:

静态:分配给VLAN的端口由管理员静态(人工)配置。

注意:虽然VLAN是在交换机上划分的,但交换机是二层网络设备,单一的有交换机构成的网络无法进行VLAN间通信的,解决这一问题的方法是使用三层的网络设备-路由器。路由器可以转发不同VLAN间的数据包,就像它连接了几个真实的物理网段一样。这时我们称之为VLAN间路由。

快速以太网:

快速以太网(FastEthernet)也就是我们常说的百兆以太网,它在保持帧格式、MAC(介质存取控制)机制和MTU(最大传送单元)质量的前提下,其速率比10Base-T的以太网增加了10倍。二者之间的相似性使得10Base-T以太网现有的应用程序和网络管理工具能够在快速以太网上使用。快速以太网是基于扩充的IEEE802.3标准。

千兆以太网:

千兆位以太网是一种新型高速局域网,它可以提供1Gbps的通信带宽,采用和传统10M、100M以太网同样的CSMA/CD协议、帧格式和帧长,因此可以实现在原有低速以太网基础上平滑、连续性的网络升级。只用于PointtoPoint,连接介质以光纤为主,最大传输距离已达到70km,可用于MAN的建设。

千兆以太网技术适用于大中规模(几百至上千台电脑的网络)的园区网主干,从而实现千兆主干、百兆交换(或共享)到桌面的主流网络应用模式。

小知识:

千兆以太网的优势是同旧系统的兼容性好,价格相对便宜。在这也是千兆以太网在同ATM的竞争中获胜的主要原因。

为什么叫以太网?

大家知道,声音是通过空气传播的,那么光是通过什么传播的呢?

在牛顿运动定律中,物体的运动是相对的。比如,地铁车厢里面的人看见您在车厢里原地踏步走,而位于车厢外面的人却看见你以120公里每小时的速度前进。

但光的运动并不是这样,您无论以什么物体作为参照物,它的运动速度始终都是299792458米/秒。这个问题困惑了很多科学家,难道牛顿定律失灵了?一个来自瑞士专利局的职员,名叫爱因斯坦的人在1905年发表了篇论文,文中提到,无论观察者以何种速度运动,相对于他们而言,光的速度是恒久不变的,相对论便由此诞生了。

由此我们可以看出,世界上根本就不存在以太这种物质,因为光速是永远恒定不变的,为其找个运动参照物是个笑话。有鉴于此,以太网的命名也就是一个笑话。但以太网并不会消失,它正随着人们追求高速度而不断的进行蜕变。以前,只要数据链路层遵从CSMA/CD协议通信,那么它就可以被称为以太网,但随着接入共享网络设备的增加,冲突会使网络的传输效率越来越低。后来,交换机的出现使全双工以太网得到了更好的实现。未来,以太网会披上光的外衣,飞的更快。

以太网CSMA/CD机制上的广播型网络。冲突的产生是限制以太网性能的重要因素,早期的以太网设备如集线器是物理层设备。不能隔绝冲突扩散,限制了网络性能的提高。而交换机(网桥)做为一种能隔绝冲突的二层网络设备,极大的提高了以太网的性能。正逐渐替代集线器成为主流的以太网设备,然而交换机(网桥)对网络中的广播数据流量则不做任何限制,这也影响了网络的性能。通过在交换机上划分VLAN和采用三层的网络设备-路由器解决了这一问题。以太网做为一种原理简单,便于实现同时又价格低廉的局域网技术已经成为业界的主流。而更高性能的快速以太网和千兆以太网的出现更使其成为最有前途的网络技术。

⑴物理层

物理层规定了Ethernet的基本物理属性,如数据编码、时标、电频等。

⑵数据链路层

数据链路层的主要功能是完成帧发送和帧接收,包括负责对用户数据进行帧的组装与分解,随时监测物理层的信息监测标志,了解信道的忙闲情况,实现数据链路的收发管理。

THE END
1.空港经济区图书馆周末网速慢,厕所只有马桶留言详情1. 空港经济区图书馆每到周末,网速就非常慢,经常连不上,连上也很慢,还经常掉线,建议提升提升图书馆宽带 2. 图书馆厕所只有马桶,没有蹲坑。很多人不想使用公用马桶,希望厕所可以增加蹲便回复 标题: 空港经济区图书馆周末网速慢,厕所只有马桶 回复部门: 滨海新区 回复时间: 2024-12-18 尊敬的网友: https://www.tj.gov.cn/zmhd/zmljl/zmljllyxq/?id=4634113
2.无法访问internet怎么解决(wifi显示已连接但无法上网怎么办)6. 联系网络服务提供商 - 技术支持:如果上述所有方法都无法解决问题,可能是网络服务提供商的问题。您可以联系他们的技术支持,询问是否有任何网络中断或配置问题。在实施上述解决方法时,请确保每一步操作都正确无误。虽然无法访问互联网可能会带来不便,但通过上述步骤,您通常能够解决问题并重新连接到网络。记住,https://baijiahao.baidu.com/s?id=1818470911976587056&wfr=spider&for=pc
3.解决网络连接受限制或无连接的方案昨下午把笔记本带到图书馆整理资料,傍晚回宿舍后我打开电脑准备连宽带时电脑桌面的左下脚却出现了"网络连接受限制或无连接"的提示: 进入网络连接的控制界面也出现了这类提示: 最开始我想到的是不是外部服务器或物理链接线路的问题,如是我用同一条网线,同一个宽带的账号借我同学的电脑登陆,非常顺利的就连接成功,https://blog.csdn.net/weixin_33973609/article/details/92965836
4.计算机网络技术的论文(推荐)2.2计算机网络连接 计算机更新换代速度不断加快,使得其网络系统之中开始出现多个计算机网络相互连通情况,在这一发展阶段,计算机的网络系统能够连接不同区域中的单个计算机的信息通路,用户能够同时利用很多个网络系统中的信息资源,基本上达到了信息资源交换和共享。 https://www.yjbys.com/biyelunwen/fanwen/jisuanji/734745.html
5.高校无线校园网建设(精选十篇)无线校园网可以解决特定场所的网络需求, 如图书馆、体育场、报告厅等难以布线地点。同时, 无线网络施工更简易、覆盖范围更大、组网更灵活, 相对于有线网络, 设备成本、施工成本更低。无线网络已经不仅仅是有线网络的延伸与拓展, 他已经成为高校网络的重要组成部分。同时它也成为高校数字化校园建设所必不可少的一https://www.360wenmi.com/f/cnkeyugbihsq.html
6.vpn实验心得5篇(全文)(2)vpn client使用的ip pool地址不能与router内部网络ip地址重叠。 (3)10.130.23.0网段模拟公网地址,172.16.1.0网段用于1720内部地址,192.168.1.0网段用于vpn通道。 (4)没有找到设置vpn client获取的子网掩码的办法。看来是ios还不支持这个功能。 (5)关于split tunnel。配置方法:首先,设置access 133 permit ip 172.https://www.99xueshu.com/w/filex7jt9fls.html
7.数字化校园建设实施方案(通用10篇)建设网络基本服务体系,加大网络出口宽度:我们的设想是:除校校通外,学校还应有相当带宽的网络出口,保证学校数百台电脑和因特网的数据交换。同时还应有相当数量的服务器用于校园网的各种功能的开发。比如:WEB服务、FTP服务、SQL服务等。 我们的设想是包括办公自动化系统、数字图书馆、教学资源库、管理信息系统和网络教https://www.ruiwen.com/fangan/5312564.html
8.网络是怎样连接的(豆瓣)图灵程序设计丛书·图解与入门系列(共35册), 这套丛书还有 《面向对象是怎样工作的(第3版)》《图解基础设施设计模式》《图解HTTP+图解TCP/IP+图解网络硬件(套装共3册)》《图解机器学习》《图解密码技术》 等。 喜欢读"网络是怎样连接的"的人也喜欢的电子书· ··· 支持Webhttps://book.douban.com/subject/26941639/
9.VMware虚拟机NAT模式如何设置网络连接,从头到尾全过程3.网卡开启后设置ip地址,此处设置的ip和本机的ip没有关系,设置成你虚拟机里面运行的计算机需要的ip地址网段 三、此时你的本机设置完成了,该设置虚拟机 1.打开虚拟机,选择你使用的操作系统打开详情页选择网络适配器,选择NAT模式并选择启动时连接,如下图; https://cloud.tencent.com/developer/article/1536422
10.图书馆网络安全(三级等保)建设方案.docx并将等级保护制度作为国家信息安全保障工作的基本制度、第1页图书馆网络安全初步建设方案基本国策,促进信息化、维护国家信息安全的根本保障。等级保护主要包含工作内容: 1.定级备案(规定了定级范围及级别) 2.建设与整改(规定了二级(含)以上系统需进行差距分析与整改) 3.等级测评(规定了三级(含)以上需进行等保测评) https://max.book118.com/html/2022/0901/8126061022004134.shtm