2、度。国外对于人脸图像识别的研究较早,现己有实用系统面世,只是对于成像条件要求较苛刻,应用范围也就较窄,国内也有许多科研机构从事这方而的研究,并己取得许多成果。人脸图像识别除了具有重大的理论价值以及极富挑战性外,还其有许多潜在的应用前景,利用人脸图像来进行身份验证,可以不与目标相接触就取得样本图像,而其它的身份验证手段,如指纹、眼睛虹膜等必须通过与目标接触或相当接近来取得样木,在某些场合,这些识别手段就会有不便之处。就从目前和将来来看,可以预测到人脸图像识别将具有广阔的应用前景,人脸识别的优势在于其自然性和不被被测个体察觉的特点。人脸识别的困难主要是人脸作为生物特征的特点所带来的。不同个体之间的
3、区别不大,所有的人脸的结构都相似,甚至人脸器官的结构外形都很相似。这样的特点对于利用人脸进行定位是有利的,但是对于利用人脸区分人类个体是不利的。易变性:人脸的外形很不稳定,人可以通过脸部的变化产生很多表情,而在不同观察角度,人脸的视觉图像也相差很大,另外人脸识别还受光照条件、人脸的很多遮盖物、年龄等多方面因素的影响。特征脸算法(PCA)使得压缩前后的均方误差最小,且变换后的低维空间有很好的分辨能力,但是在种方法在处理人脸图像时,要将二维图像矩阵转换成一维的列向量,使图像的维数达到上万维,计算工作量非常大,特征提取速度慢。为了克服传统PCA的不足,研究者们相继提出了二维PCA(2DPCA)方法、PCA+2DPC
THE END