深度学习自然语言处理(NLP)知识图谱:知识图谱构建流程本体构建知识抽取(实体抽取关系抽取属性抽取)知识表示知识融合知识存储元気森林

本体构建方法还没有形成统一的规范,主要原因是众多研究者所处的领域和构建目的不同,因此,他们所采取的方法也不尽相同。研究者提出了多种本体构建方法,领域内普遍认可的主要有以下几种:

为了更好的构建本体,各领域纷纷开发适合自己领域的本体构架工具。在众多本体构建工具中存在着六个知名的构建工具,它们分别是:Protege、Ontolingua、OntoSaums、OntoEdit以及WebOnto。Protege是斯坦福大学研究人员根据本体构建需要开发的一款本体开发软件,为实现工具软件对其他语言的兼容性和开放性,Protege软件的开发采用面向对象语言—Java语言进行开发。

类的层次结构还只是本体的骨架,不足以全面表现领域知识和提供系统能力问题所需要的答案信息,其血肉就要通过类的关系,即属性来充实了。

属性分为外部属性和内部属性:

在对类的属性进行定义之后,应该根据类目的层次关系和属性的特征对属性所包含的不同分面分别进行定义,进一步保证属性的完整性。如对属性的取值进行定义,对属性的基数进行定义等:

本体中的关系多种多样,除了基本的语义关系,很多类目关系还需要用户自主归纳总结然后定义。对于本体的基本语义关系来说,主要有四种,分别是:part-of、kind-of、instance-of和attribute-of。

构建本体之前要有详细的规划,包括选择合适的本体描述语言、本体构建的工具以及本体构建的方法,做到统筹兼顾,全面把握本体构建的整个过程。在大众分类标签的基础上,运用微调后的七步法,采用protege4.3软件,展示一下旅游领域本体的构建过程。

本体构建完成后,需要对形成的本体进行保存。Protege本体构建软件为本体文档的保存提供了多种形式,如RDF/XML、OWL等保存格式。

使用各种转换软件即可实现。比如:neosemantics-3.4.0.2支持3.4.x版本neo4j数据库。

实体抽取。主要指的是从自然文本中抽取到我们所需要的命名实体(例如:地名、人名,以及各种专有名词)。这个过程也叫做命名实体识别(namedentityrecognition,简称NER)。最早的命名实体识别过程,都是基于规则的,由于所有的规则都是需要人为手工的编写,因此需要耗费大量的人力,可扩展性也很差。

在我们得到实体之后,就考虑从文本中挖掘出实体与实体之间的语义信息,也就是它们之间的关联关系。关系抽取不仅是信息抽取的任务之一,也是构建和补全知识图谱的关键所在,其研究的主要内容是从文本内容中挖掘出实体与实体之间的语义关系,从纯文本生成关系数据的过程,是自然语言处理(NLP)中的关键任务。该任务可以描述为:给定一段文本S,确定两个目标实体对的关系类别rrr。最早的关系抽取,是通过人工编写一系列的规则,接着采用模式匹配的方式去进行关系挖掘。现在都是通过神经网络模型抽取到句子的信息,在根据信息对关系进行分类。

中文数据集可用成熟的LTP工具包实现关系抽取。英文数据集可用成熟的NLTK工具包实现关系抽取。

知识图谱的本质就是图,其中点代表实体,边代表关系。目前可以用两种形式来表示知识图谱。第一种就是RDF,第二种就是属性图的形式。

word1="七星景区"word2="七星公园"r=synonyms.compare(word1,word2,seg=fales)synonyms.compare会返回word1和word2的相似度,seg表示是否需要分词。在实体合并部分仍然会使用到Synonyms。具体实现算法分为3部分,第一部分实体链接、第二部分属性链接、第三部分属性值链接。

知识图谱存储主要可以通过三种方式:第一种是关系数据库(MySQL);第二种是文档数据库(MongoDB);第三种是图数据库(Neo4j)。Neo4j的优势在于:

THE END
1.AI在自然语言处理中的突破:从理论到应用腾讯云开发者社区自然语言处理的核心技术 1. 词嵌入(Word Embedding) 词嵌入技术通过将词语映射到一个高维向量空间中,使得计算机能够理解词语之间的关系。常见的词嵌入模型包括Word2Vec、GloVe和FastText。这些模型通过大量文本数据的训练,能够捕捉词语的语义信息。 ###2. 变压器模型(Transformer) https://cloud.tencent.com/developer/article/2479408
2.自然语言处理中的知识图谱自然语言处理(NLP)是计算机科学和人工智能领域的一个分支,旨在让计算机理解、生成和处理人类语言。知识图谱(Knowledge Graph,KG)是一种以实体(entity)和关系(relation)为基础的图形数据库,可以帮助计算机理解和推理人类语言。在过去的几年里,知识图谱在自然语言处理领域取得了显著的进展,成为了NLP的一个重要组成部分。 https://blog.csdn.net/universsky2015/article/details/135788023
3.应用:自然语言生成与对话系统51CTO博客知识图谱(Knowledge Graph, KG)是一种用于表示实体(entity)和实体之间的关系(relation)的数据结构。知识图谱的核心是将实体和关系建模成图的节点(node)和边(edge),实体表示为节点,关系表示为边。知识图谱可以帮助计算机理解自然语言,从而实现自然语言处理(Natural Language Processing, NLP)的目标。 https://blog.51cto.com/universsky/9048284
4.AI自然语言处理NLP原理与Python实战:知识图谱的构建自然语言处理(Natural Language Processing,NLP)是人工智能(Artificial Intelligence,AI)领域的一个重要分支,旨在让计算机理解、生成和处理人类语言。知识图谱(Knowledge Graph,KG)是一种结构化的数据库,用于存储实体(如人、地点、组织等)及其关系的信息。知识图谱的构建是自然语言处理的一个重要应用,可以帮助计算机理解人类https://zhuanlan.zhihu.com/p/670006229
5.Python自然语言处理实战图1-5还显示了当我们使用Google的Translation API服务时,翻译文本的JSON响应。 1.2.5 自然语言推理 自然语言推理(natural language inference,NLI)任务对前提和假设之间的关系进行分类。在推理过程中,任务将前提和假设作为输入,并基于给定的前提输出假设是否为真的判断。 https://www.ituring.com.cn/book/tupubarticle/33684
6.文本序列的常用构图方法与代表案例剖析信息抽取图的目的是抽取结构信息来表示自然句子中的高级信息。 在实现上: 首先,通过Openie等工具识别出句子中的实体、实体之间的共指关系三元组(如上图中名字 "Pual"、名词 "He "和 "一位著名的计算机科学家 指的是同一个对象),以及主谓宾三元组(如图中的paul,grew up in seatle),一同作为关系三元组数据(https://www.shangyexinzhi.com/article/4455904.html
7.干货分享RDF和LPG知识图谱上的表示学习在本文中,我们将重温三元组在知识图谱构建中的结构范式,同时也将学到新概念—超图、超关系知识图谱以及超关系知识图谱的发展历程、超关系知识图谱编码、解码的全过程等等。原文(见阅读原文)翻译如下: 知识图谱(KGs)是现代自然语言处理和人工智能应用的基石——近期的成果包括问答、实体和关系链接、语言建模、信息提取,https://www.jianshu.com/p/5366ec5bc4a2
8.政策智能分析详解,达观RPANLP知识图谱技术多嘲落地应用通过机器人流程自动化(RPA)、自然语言处理(NLP)、共光学字符识别(OCR)、知识图谱、智能搜索、智能推荐、文档智能审阅等自动化与人工智能技术的结合,未来,达观数据也将继续助力企业快速实现智能化升级。https://blog.itpub.net/69997703/viewspace-2778372/
9.科学网—[转载]时态知识图谱补全的方法及其进展杜剑峰(1976-),男,博士,广东外语外贸大学教授,中国中文信息学会语言与知识计算专业委员会委员,主要研究方向为知识表示与推理、数据挖掘和自然语言处理。在AAAI、WWW、ISWC、CIKM和KAIS等学术会议上发表数十篇文章,获得多项国家自然科学基金项目资助。担任JournalofWebSemantics编委,长期担任CCKS、CSWS、IJCAI、AAAI、ISWC、https://blog.sciencenet.cn/blog-3472670-1296534.html
10.产品经理的知识图谱入门实操人人都是产品经理从无结构的文本中抽取知识,首先需要识别文本中的实体,这个过程称之为做命名实体识别(Named Entity Recognition,NER),命名实体识别属于自然语言处理中的一项基础任务,同时也是关系抽取、事件抽取、机器翻译、问答系统等多个NLP任务的基础工作,其目标是从文本中抽取出具有特定意义的实体,一般包括实体类、实践类、数字类三个https://www.woshipm.com/pmd/2638735.html
11.全国一体化政务大数据体系建设指南图2国家平台与地方和部门平台关系图 国务院办公厅统筹全国一体化政务大数据体系的建设和管理,整合形成国家政务大数据平台,建立完善政务大数据管理机制、标准规范、安全保障体系。国务院有关部门要明确本部门政务数据主管机构,统筹管理本部门本行业政务数据,推动垂直管理业务系统与国家政务大数据平台互联互通。已建设政务数据平台https://www.hc.gov.cn/bmjd/jz/gdz/zwxx_100731/dt_100733/202210/t20221031_11249976.html
12.Python自然语言处理之词干,词形与最大匹配算法代码详解python这篇文章主要介绍了Python自然语言处理之词干,词形与MaxMatch算法代码详解,涉及词干提取,词形还原,简单总结了二者的区别和联系,最后还分享了最大匹配算法的相关示例,具有一定参考价值,需要的朋友可以了解下。 本文主要对词干提取及词形还原以及最大匹配算法进行了介绍和代码示例,Python实现,下面我们一起看看具体内容。 https://www.jb51.net/article/128333.htm
13.?达摩院文档级关系抽取新数据集和五元组抽取新任务自然语言处理 关系抽取 EMNLP 信息抽取 知识图谱邴立东 2022-12-02关系抽取(RE)是 NLP 的核心任务之一,是构建知识库、事件抽取等下游应用的关键技术。多年来受到研究者的持续关注。 本文将介绍达摩院语言实验室多语言 NLP 算法团队的两篇 EMNLP 2022 主会论文。第一篇论文针对文档级关系抽取任务中普遍存在的假负https://techbeat.net/article-info?id=4379